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1. Introduction

1.1. General information

Soliton is a solution of the field equations which represents a particle-like
configuration of the field with specific properties. Common properties of the con-
figuration are permanence of the form, localization within a region and a possibility
to interact with other solitons or fields.

In general construction of solitons comes down to consideration of different
Lagrangian densities with or without constraints on field potentials and defining a
certain type of field potentials that can create a soliton solution.

1.2. Description of a model

The model of a field that we will consider is a 2+1 dim O(3) sigma model
with the Lagrangian density that is determined by expression:

L =
1

4
(∂µϕ

a · ∂µϕa)

and a constraint ϕa · ϕa = 1 on the triplet of the fields ϕa = (ϕ1, ϕ2, ϕ3).

The soliton solution of this model can be created with help of the complex

variable W =
ϕ1 + iϕ2

1− ϕ3
using the north pole of stereographic projection from the

sphere S2 onto the plain R2. Then using a holomorphic map W =
P (z)

Q(z)
where

are polynomials of at most N of the complex coordinate z = x+ iy one can obtain
N -soliton configuration of the field.

So let’s start with the analysis of stereographic projection and then move on
with our plan that we’ve discussed.
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2. Stereographic projections

2.1. North projection

At first let’s analyze the constrain on the field components that we have.
The expression for the constrain is:

ϕa · ϕa =
(
ϕ1
)2

+
(
ϕ2
)2

+
(
ϕ3
)2

= 1

This expression determines a sphere S2 of a unit radius with the center in the
point of origin of a three dimensional field space. For the sphere itself, only two
independent variables are required for its description so it’s possible to decrease
the dimension of the field space.

So let’s create a one-to-one correspondence from the S2 sphere to R2 plane.
For that purpose we place center of a unit sphere in the point of origin and then
draw a line which begins at the top (North pole) of our sphere and intersects a
sphere and a plane. This line generates a one-to-one correspondence for every point
on the sphere to a single point on the plane except for the point of North pole.

N

ϕ1

ϕ2

ϕ3

u

v

M(ϕ1, ϕ2, ϕ3)

P (u, v)

Figure 1: North projection
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In 3-dimensional Cartesian coordinates an equation of a line that goes through
two points P1(x1, y1, z1) and P2(x2, y2, z2) is:

x− x1
x2 − x1

=
y − y1
y2 − y1

=
z − z1
z2 − z1

Since our points are N(0, 0, 1) and M(ϕ1, ϕ2, ϕ3), we obtain next formula:

u

ϕ1
=

w

ϕ2
=

z − 1

ϕ3 − 1

∣∣∣∣∣
z=0

=⇒ u

ϕ1
=

w

ϕ2
=

1

1− ϕ3


u

ϕ1
=

1

1− ϕ3

w

ϕ2
=

1

1− ϕ3

=⇒ (u,w) =

(
ϕ1

1− ϕ3
,

ϕ2

1− ϕ3

)

Now let’s obtain inverse transformation:

u

ϕ1
=

1

1− ϕ3

w

ϕ2
=

1

1− ϕ3

(ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 1

=⇒


ϕ1 = u(1− ϕ3)

ϕ2 = w(1− ϕ3)

(1− ϕ3)2 · (1 + u2 + w2) = 2(1− ϕ3)

And we gain inverse transformation by solving the system:

(ϕ1, ϕ2, ϕ3) =

(
2u

1 + u2 + w2
,

2w

1 + u2 + w2
, −1− u2 − w2

1 + u2 + w2

)

If we take one complex field variable W = u + iw instead of two real field
variables (u,w) we can introduce one-to-one correspondence from (ϕ1, ϕ2, ϕ3) to a
field W and it’s conjugate W which are not independent.
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
u =

1

2
(W +W )

w = − i
2
(W −W )

=⇒ (ϕ1, ϕ2, ϕ3) =

(
W +W

1 +WW
, −i W −W

1 +WW
, −1−WW

1 +WW

)

Note that:

1+(u2+w2) = 1+
1

4

(
W 2 +W

2
+ 2WW −W 2 −W 2 −W 2

+ 2WW
)
= 1+(WW )

1− (u2 + w2) = 1− (WW )

2.2. South projection

If we take a South pole S(0, 0,−1) as an origin of a line we will get almost
identical expressions for field components by using the same algorithm. Let’s show
that and the difference that appears.

ϕ1

ϕ2

ϕ3

u

v

M(ϕ1, ϕ2, ϕ3)

P (u, v)

S

Figure 1: South projection
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x− x1
x2 − x1

=
y − y1
y2 − y1

=
z − z1
z2 − z1

Since our points are S(0, 0,−1) and M(ϕ1, ϕ2, ϕ3), we obtain next formula:

u

ϕ1
=

w

ϕ2
=

z + 1

ϕ3 + 1

∣∣∣∣∣
z=0

=⇒ u

ϕ1
=

w

ϕ2
=

1

1 + ϕ3


u

ϕ1
=

1

1 + ϕ3

w

ϕ2
=

1

1 + ϕ3

=⇒ (u,w) =

(
ϕ1

1 + ϕ3
,

ϕ2

1 + ϕ3

)

And inverse transformation:

u

ϕ1
=

1

1 + ϕ3

w

ϕ2
=

1

1 + ϕ3

(ϕ1)2 + (ϕ2)2 + (ϕ3)2 = 1

=⇒


ϕ1 = u(1 + ϕ3)

ϕ2 = w(1 + ϕ3)

(1 + ϕ3)2 · (1 + u2 + w2) = 2(1 + ϕ3)

(ϕ1, ϕ2, ϕ3) =

(
2u

1 + u2 + w2
,

2w

1 + u2 + w2
,
1− u2 − w2

1 + u2 + w2

)
After introducing complex field W = u+ iw we get:

u =
1

2
(W +W )

w = − i
2
(W −W )

=⇒ (ϕ1, ϕ2, ϕ3) =

(
W +W

1 +WW
, −i W −W

1 +WW
,
1−WW

1 +WW

)

As we can see the expressions are almost identical except for the sign of the
last potential ϕ3.
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2.3. Connection between projections

We have a triplet of potentials (ϕ1, ϕ2, ϕ3) that determines a field and its
configuration. However this triplet has two different sets of representation using
complex variable W which depend on the type of the projection. It means there
exists a correspondence between these representations which we are to find now.

Let’s consider a triplet that is produced by north projection and a complex
variable W :

(ϕ1, ϕ2, ϕ3) =

(
W +W

1 +WW
, −i W −W

1 +WW
, −1−WW

1 +WW

)
and a triplet produced by south projection with complex variable W ′:

(ϕ1′, ϕ2′, ϕ3′) =

(
W ′ +W ′

1 +W ′W ′
, −i W

′ −W ′

1 +W ′W ′
,
1−W ′W ′

1 +W ′W ′

)
Field potentials do not depend on the type of the projection, which means:


ϕ1′ = ϕ1

ϕ2′ = ϕ2

ϕ3′ = ϕ3

=⇒



W ′ +W ′

1 +W ′W ′
=

W +W

1 +WW

−i W
′ −W ′

1 +W ′W ′
= −i W −W

1 +WW

1−W ′W ′

1 +W ′W ′
= −1−WW

1 +WW

By solving this system of equations it can be shown that the connection
between north and south projections has the following form:

W ′ =
1

W

Note that W ′′ =W – every projection is identical to itself.

So now if we have complex field W that represents one of the projections of
field potentials we can obtain complex field from the other projection W ′ which
generates the same triplet of potentials and field configuration as well.
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3. Construction of solitons

From previous part we got that our triplet (ϕ1, ϕ2, ϕ3) can be replaced by

a single complex field variable W = u + iw =
ϕ1 + iϕ2

1± ϕ3
(the sign depends on the

projection). This complex variable is determined at the every point of an (x, y)

plane since we are in 2+1 dim model.

Every point of our plane can be mutually unambiguously mapped to a com-
plex number z = x+ iy. So our problem in creating a potentials ϕa(x, y) is equiv-
alent to a creating a function of complex variable W (z) that can produce soliton
solutions.

There is also a question about south and north projections. Which of those
two projections should we use? Let’s answer on that question.

3.1. Independence of energy

Despite the fact that for two different projections we have two different sets
of transformations we can show that physical invariants of the fields (energy density,
for example) remain the same.

Let’s take a look at our Lagrangian density one more time:

L =
1

4
(∂µϕ

a · ∂µϕa)

It’s clear that our Lagrangian density does not depend on potentials them-
selves but only on their derivatives. Because of that its stress-energy tensor can be
written as:

Tµν =
∂L

∂(∂µϕa)
∂νϕ

a − ηµνL, η = diag(−1, 1, 1)

We consider static configurations of the field, which leads to ∂0ϕa = 0. Thus
energy density as a T 00 component is:
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ε = T 00 =
∂L

∂(∂0ϕa)
∂0ϕ

a − η00L = L

Due to stationarity of our model Lagrangian density equals to:

L =
1

4

3∑
a=1

{(
∂ϕa

∂x1

)2

+

(
∂ϕa

∂x2

)2
}

As we remember the transformation laws are:

(ϕ1, ϕ2, ϕ3) =

(
W +W

1 +WW
, −i W −W

1 +WW
, ±1−WW

1 +WW

)
If we take a derivative ∂µ of the potentials, we will obtain:

∂µϕ
1 =

1

(1 +WW )2

(
∂µ(W +W ) + (W

2
∂µW +W 2∂µW )

)
∂µϕ

2 =
−i

(1 +WW )2

(
∂µ(W −W ) + (W

2
∂µW −W 2∂µW )

)
∂µϕ

3 =
∓2

(1 +WW )2

(
W∂µW +W∂µW

)
Now it can be seen that even if the sign of ∂µϕ3 depends on the type of pro-

jection the energy density remains the same because only the squares of derivates
are used in it. And there is nothing unusual in the expressions for ∂µϕa that could
affect this.

It can be shown [1] that if we use complex fields W and W the Lagrangian
density (and energy density) will look like:

L =
∂µW∂µW

(1 +WW )2

And by introducing new derivatives Lagrangian density is changed to:
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
∂z =

1

2
(∂x − i∂y)

∂z =
1

2
(∂x + i∂y)

=⇒ L =
|∂zW |2 + |∂zW |2

(1 + |W |2)2

3.2. Rational mapping

Now as we have shown that the field invariants don’t depend on the pro-
jections we can focus on creating a soliton solution for our model. Any soliton
solution of our model can be constructed using rational mappings [1].

Rational mapping is a mapping:

W =
P (z)

Q(z)

where P (z) and Q(z) are polynomials of degree at most N .

3.3. Examples of solutions

Now we have the method of constructing any N -soliton solution for our 2+1
dim O(3) sigma model. Let’s have a look at examples of application of this method.

3.3.1 Two soliton solution

For two soliton solution we will consider following mapping:

W (z) =
(z − a)(z − b)
(z − c)(z − d)

where a, b, c, d are complex numbers.
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(a) Energy density for
a = −0.08− 1.9i, b = 0.79 + 2i,
c = 2 + 0.27i, d = 0.25− 0.28i

(b) Energy density for
a = 0.75− 1.9i, b = 0.1 + 1.37i,

c = −2.49− 0.61i, d = −0.88− 1.38i

(c) Energy density for
a = −1.55 + 1.27i, b = 1.53 + 0.37i,
c = −0.28 + 0.34i, d = −0.14 + 1.3i

(d) Energy density for
a = 0.24 + 0.105i, b = −0.21− 0.03i,
c = 0.02− 0.435i, d = −0.225− 0.28i

Figure 1: 4 distributions of energy density for different constants a, b, c, d
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3.3.2 Eight solitons in a row

We can create a configuration of the field where 8 solitons are aligned along
x-axis by using following map. For example using north projection we will have:

W (z) =
1

(z − x1)(z − x2)(z − x3)(z − x4)(z − x5)(z − x6)(z − x7)(z − x8)

where x1, x2, x3, x4, x5, x6, x7, x8 are real numbers that show the position of a soli-
ton on the x-axis.

Equivalent mapping for the south projection is:

W ′(z) = (z − x1)(z − x2)(z − x3)(z − x4)(z − x5)(z − x6)(z − x7)(z − x8)

Figure 2: Energy density of 8 solitons along x-axis with
x1 = 7, x2 = 6.6, x3 = 4.9, x4 = 4.1, x5 = −4.1, x6 = −4.9, x7 = −6.6, x8 = −7
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3.3.3 Eight solitons in a triangle

And in the end let’s consider following mapping using north projection:

W =
4

1

z
+

1

z + 1
2 − i

+
1

z − 1
2 − i

+
1

z − 1
+

1

z + 1
+

1

z + 3
2 + i

+
1

z − 3
2 + i

+
1

z − 2i

For the south projection equivalent mapping is:

W ′(z) =
1

4

(
1

z
+

1

z + 1
2 + i

+
1

z − 1
2 + i

+
1

z − 1
+

1

z + 1
+

1

z + 3
2 − i

+
1

z − 3
2 − i

+
1

z + 2i

)

Figure 3: Energy density of 8 solitons generated by mapping in 3.3.3
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(a) ϕ1 potential

(b) ϕ2 potential (c) ϕ3 potential

Figure 4: Three potentials ϕ1, ϕ2, ϕ3 for the mapping given in 3.3.3
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4. Conclusion

We have considered dim 2+1 O(3) sigma model.

To create a stationary soliton solutions we started with the analysis of stere-
ographic projections and derived forward and inverse transformations. Two types
of projections were considered – a projection which uses the North pole of potential
sphere and another projection which uses South pole.

It was shown that field invariants (e.g. energy density) do not change what-
ever type of projection is used.

And then by using rational mappings we constructed several different many-
soliton solutions. Various energy density and potential distributions were obtained.
This was a demonstration of the fact that any N -soliton solution can be produced
by this kind of a mapping.
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