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1 Abstract

The evolution of heavy quarks after high-energy collisions is an active area of re-
search for understanding the behavior of the quark-gluon matter at extremely high
temperatures and densities. One method to comprehend the numerous aspects of
QGP is to probe the plasma medium with high-energy particles that are created
immediately after the collision before the medium is actually formed. This report
aims to test the equilibrium distribution features through the Fokker-Planck equa-
tion to asses whether it undergoes Boltzmann-Gibbs statistics or Tsallis statistics.

Key words: Equilibrium distribution, Fokker-Planck Equation, Tsallis statis-
tics.

2 Introduction

Objects around us are made up of matter particles (Fermions) and mediator par-
ticles (Bosons). They interact together via four interactions: electromagnetic in-
teraction, gravitational interaction, weak interaction, and strong interaction. Fig-
ure.1 classifies the three generations of Fermions and Bosons within their mass,
charge, spin, and name. A Quark is a fundamental particle that contains color
charges (red, green, and blue) that were introduced to comply with Pauli’s ex-
clusion principle. Under extreme conditions (high temperature and/or density),
hadrons (e.g. protons and neutrons), the composite particles made up of quarks
and gluons, lose their identity and form a plasma of quarks and gluons, termed as
Quark Gluon Plasma (QGP). This is a state of matter in which the micro-second
old universe existed. Studying the transport of heavy quarks through the QGP
medium is one of the ways to study the properties of QGP and in this project,
we focus on this phenomenon. Heavy quarks (charm, bottom, and top) are char-
acterized by larger mass (mQ) compared to those of the light quarks (mq), i.e.
mQ >> mq.. Their Compton wavelength λQ << Rhad where Rhad is the size of
the hadron containing the heavy quark, λQ ∼ 1

mQ
and Rhad ∼ mq [1].

- Heavy quarks including charm and bottom quarks are important in the stud-
ies of QGP because of the following reasons:

• The production of HQs is essentially confined to the initial, phase of
a heavy-ion collision and they do not control the bulk properties of
the matter. HQ mass is considerably larger than the generally acquired
temperatures and other nonperturbative measurements, so the system’s
full space-time evolution has been recorded by the heavy flavors.

• Heavy quarks can successfully maintain the interaction history because
their thermalization time scale is longer than that of light quarks and
gluons by a factor of

mQ

T
[2].

The project aims to study the equilibrium distribution of the heavy quarks af-
ter they complete their passage through the QGP medium with the help of the
Fokker-Planck equation. It is organized as follows; we first review what a QGP
is, its importance, and the passage of HQs inside the QGP. Then we begin to
study the equilibrium distribution of HQs with the aid of evolution equations;
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Boltzmann Transport Equation (BTE), and the Fokker-Planck Equation (FPE)
through certain approximated approaches. Finally, model the distribution using
MATHEMATICA to analyze the dependency on the transport coefficients, to test
whether this equilibrium obeys Boltzmann or Tsallis statistics.
In this project, the natural units are used where h̄ = c = kB = 1, as well as the
Einstein summation convention.

Figure 1: Fundamental particles classification [3].

3 Quark Gluon Plasma

3.1 QGP formation

QGP is a thermalized state beyond Tc = 170MeV and ϵ = 1GeV/fm3 in which
quarks and gluons are liberated to move within a nuclear volume which displays
the screening of color charges. As shown in Fig.(2), high density/ temperature
associated with the increment in energy results in the creation of Quark-Gluon
Plasma (QGP), in which the quarks are then deconfined. Deconfinement is the
phenomenon where quarks can not be bound into their hadrons due to screening
of color potential given by V (r) ∼ −α

r
+ σr.[1]

3.2 Importance of QGP

At the early stages of universe evolution, as it expands, strong and weak interac-
tions are detached and it was a deconfined state of quarks and gluons T ∼ 100GeV
known as QGP. Typically, at T ∼ 100MeV hadrons are created and so occurs the
deconfinement-confinement transition. QGP might also be present at the center
of a neutron star since it has a high central density (∼ 10 normal nuclear matter
density), thus hadrons lose their identities and take the form of QGP. The temper-
ature is a key distinction between QGP in the early cosmos and that in neutron
stars. Whereas QGP has a temperature of T ∼ 100MeV in the early cosmos, it
has a temperature of T ∼ 0MeV at the core of a neutron star. [1]
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Figure 2: QGP in high density/temperature [4]

3.3 The dynamics of HQs inside the QGP

Within 1fm after two lead ion beams collide, the hydrodynamic expansion of
a thermalized medium begins. [5], [6]. Fig.(3) visualizes the evolution of high
energy particles inside the QGP medium where the collision point of Pb+Pb is at
the origin point. After the collision, there is a pre-equilibrium phase where high
energy particles are liberated until reaching a proper time τo less than 1 fm. During
the phase equilibrium, a nearly thermal quark-gluon plasma is formed. Hadrons
are believed to be split by a first-order phase transition and form an expanded
QGP medium. The plasma thermalizes at a temperature of around 2Tc; when it
cools, it mostly expands longitudinally until it reaches a temperature below Tc,
at which point it transforms into a gas of hadrons. The elemental composition of
the created hadrons freezes at that temperature, causing the phase shift from the
QGP phase to the hadronic phase [5], [6].

Figure 3: Space-time diagram of evolution after high-energy collisions [7].
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4 Evolution equations

One may encounter two types of evolution while studying QGP,

1. Hydrodynamic evolution of medium governed by ∂µT
µν = 0 where T µν is

the Stress Energy Tensor[8].

2. Evolution of energetic particles like HQ having non-equilibrium distribution

4.1 Boltzmann Transport Equation in the Relaxation Time
Approximation

The evolution equation of HQs is given by the Boltzmann Transport Equation
(BTE):

df

dt
= C[f ] (1)

where f is the phase-space distribution function, and C[f ] is the collision term.
In the relaxation time approximation (RTA) (for a homogeneous medium with no
external force) :

C[f ] ≈ ∂f

∂t
= −f − feq

τ
(2)

We note that τ or the relaxation time is the time taken to reach equilibrium.
feq is the distribution function, meaning it is a constant quantity in time (∂feq

∂t
=0).

The minus sign indicates that collisions help the distribution to reach equilibrium
[9]. Solving for f(t);

∂f

f − feq
= −∂t′

τ
(3)∫ f(t)

f(t=0)

∂f

f − feq
= −

∫ t

t=0

∂t′

τ

ln[f − feq]
f(t)
f(0) = − [t′]t0

τ

ln

(
f(t)− feq
f(0)− feq

)
= − t

τ

Defining f(0) = fin, we obtain:

f(t)− feq = (fin − feq)e
− t

τ

f(t) = feq + (fin − feq)e
− t

τ (4)

4.2 Deriving Fokker Planck Equation from Boltzmann Trans-
port Equation

The distribution function f(x⃗, p⃗, t), can be used to express the statistical features
of a group of particles. The probability of finding the particle in an infinitesimally
small area of n-dimensional phase space is calculated by multiplying this density by
the phase-space volume element dnxdnp. Under the assumption of f(x⃗, p⃗, t) obey-

ing Boltzmann-Vlasov master equation, the collision term W (p⃗, k⃗) is absolutely

5



local and only depends on the particle momenta. Where p⃗ is the 3-momentum of
incoming particle, and k⃗ is the 3-momentum transfer. The collision term consists
of two components; the first gain term W (p⃗ + k⃗, k⃗) indicates the rate at which a

particle with momentum p⃗ + k⃗ loses momentum k⃗ as a result of reactions with
the medium. While the second loss term W (p⃗, k⃗) is a result of scattering. The
Fokker-Planck equation is then obtained by Taylor expanding the collision term
about p⃗ in the second-order of k⃗ assuming soft collisions |⃗k| ≈ 0 [9]

∂f

∂t
+ ẋi

∂f

∂xi

+ ṗi
∂f

∂pi

=

∫
d3k

[
W (p⃗+ k⃗, k⃗)f(x⃗, p⃗+ k⃗, t)−W (p⃗, k⃗)f(x⃗, p⃗, t)

]
=

∫
d3k

[
W (p⃗, k⃗)f(x⃗, p⃗, t) + k⃗ · ∇p⃗W (p⃗, k⃗)f(x⃗, p⃗, t)

+
1

2

∑
i,j

kikj
∂2f

∂pi∂pj
W (p⃗, k⃗)−W (p⃗, k⃗)f(x⃗, p⃗, t)

]
=

∫
d3k

[
ki
∂W

∂pi
f(x⃗, p⃗, t) +

1

2

∑
i,j

kikj
∂2f

∂pi∂pj
W (p⃗, k⃗)

]
=

∂

∂pi
Aif +

∂2

∂pi∂pj
Bijf (5)

Where Ai and Bij are the drag and diffusion coefficients respectively, given by:

Ai(p⃗) =

∫
d3kkiW (p⃗, k⃗) (6)

Bij(p⃗) =

∫
d3kkikjW (p⃗, k⃗) (7)

4.3 Fokker Planck Equation and the equilibrium function

Fokker Planck equation studies the phase space distribution of particles in a ther-
mal medium. It can be obtained by applying the Landau Kinetic Approximation
(LKA) to the BTE. In this approximation, the BTE can be written in terms of
the drag and diffusion coefficients (Ai and Bij) in the following way: [9], [10]

∂f

∂t
+ ẋi

∂f

∂xi

+ ṗi
∂f

∂pi
=

∂

∂pi
Aif +

∂

∂pi

∂

∂pj
Bijf (8)

The stationary solution of this equation can be written as:

feq(p) = N exp[−ϕ(p)] (9)

Assuming a homogeneous medium with no external force;

∂f

∂t
=

∂

∂Pi

[Aif +
∂Bij

∂Pj

f ] = −∇⃗P · P⃗ (10)
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Where P⃗ is the Probability Current;

Pi = −Aif − ∂

∂Pj

(Bijf) (11)

For a stationary state i.e. at equilibrium where ∂f
∂t

= 0, the Probability current
vanishes, therefore eq(10) becomes:

0 = −AiN exp[−ϕ(p)]− ∂

∂Pj

(BijN exp[−ϕ(p)]) (12)

−Ai(N exp[−ϕ(p)]) =
∂(Bij)

∂Pj

(N exp[−ϕ(p)]) +Bij(N exp[−ϕ(p)])(− ∂ϕ

∂Pj

) (13)

Finally, we will be left with the drag coefficient;

Ai(p⃗, T ) = Bij(p⃗, T )
∂ϕ(p⃗)

∂Pj

− ∂Bij(p⃗, T )

∂Pj

(14)

Considering Einstein’s summation convention, the equivalence of eq(14) in the
case of spatial homogeneity where the equilibrium distribution related to the drag
and diffusion coefficients depends on p = |p⃗| will be derived in the following steps;
The most general form of Ai and Bij is given in terms of pi (3 momenta of HQ)
and δij (Kronecker delta) as shown in eq(15) and eq(16):

Ai(p⃗, T ) = piA(p, T ) (15)

Bij(p⃗, T ) = (δij −
pipj
p2

)B∥(p⃗, T ) +
pipj
p2

B⊥(p⃗, T ) (16)

Substituting eq(15) and eq(16) into eq(14):

Ai(p, T ) = Bij
∂ϕ(p⃗)

∂pj
− ∂Bij(p⃗, T )

∂pj

= piA(p, T )

(17)

A(p, T ) =

[
(δij −

pipj
p2

)B⊥
∂ϕ(p⃗)

∂pj
+

pipj
p2

B∥
∂ϕ(p⃗)

∂pj
− ∂Bij(p⃗, T )

∂pj

]
1

pi
(18)

The first term contributes to zero when p2 is written in form of pjpj:[
(δij −

pipj
p2

)B⊥
∂ϕ(p⃗)

∂pj

]
1

pi
= B⊥

∂ϕ(p⃗)

∂pj

[
1

pj
− 1

pj

]
= 0 (19)

Subsequently, the second term contributes to the following:[
pipj
p2

B∥
∂ϕ

∂pj

]
1

pi
=

1

p
B∥

∂ϕ

∂p
(20)

As for the third term
∂Bij

∂pj

1
pi
:[

δij
∂B⊥

∂pj
+

∂

∂pj

[
pipj
p2

]
[B∥ −B⊥̊] +

[
pipj
p2

] [
∂

∂pj

]
[B∥ −B⊥]

]
1

pi

=
1

p

dB⊥

dp
+

1

pi

∂

∂pj
(
pipj
p2

)[B∥ −B⊥] +
1

p

d

dp
[B∥ −B⊥]

=
1

p

dB∥

dp
+

1

pi

[
∂

∂pj
(
pipj
p2

)

]
[B∥ −B⊥]

‘1q

(21)
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Also, ∂
∂pj

(
pipj
p2

) is given by:

=
1

p2
∂

∂pj
(pipj) + pipj

∂

∂pj

[
1

p2

]
=

1

p2

[
∂pi
∂pj

pj + pi
∂pj
∂pj

]
− pipj(p

2)−2

[
∂p2

∂pj

]
=

1

p2
(δijpj + piδjj)− pipj(p

2)−2

[
∂p2

∂pj

]
=

1

p2
(pi + 3pi)− pipj

1

p4

[
∂p2

∂pj

]
(22)

The term ∂p2

∂pj
can be evaluated to give the following by letting p2 = pkpk from

Einstein’s summation convention:

∂p2

∂pj
= 2

∂pk
∂pj

pk = 2δkjpk = 2pj (23)

Putting it back to eq(22), we will have:

∂

∂pj
(
pipj
p2

) =
1

p2
(4pi)−

2

p4
pipjpj (24)

Therefore, eq(21) will be:

=
1

p

dB∥

dp
+

1

pi

[
1

p2
(4pi)−

2

p4
pipjpj

]
[B∥ −B⊥]

=
1

p

dB∥

dp
+

4

p2
− 2

p4
pjpj[B∥ −B⊥]

=
1

p

dB∥

dp
+

[
2

p2

]
[B∥ −B⊥]

(25)

Now by summing over the RHS of equations (20) and (25) in eq(18), we will have
the drag coefficient in the following equation:

A(p, T ) =
1

p

dϕ

dp
B∥ −

1

p

dB∥

dp
− 2

p2
[B∥ −B⊥] (26)

where δii = 3 in our case of 3D, and in nD the eq will be:

A(p, T ) =
1

p

dϕ

dp
B∥ −

1

p

dB∥

dp
− n− 1

p2
[B∥ −B⊥] (27)

Now we choose the following form for ϕ :

ϕTs =
(1)

1− q
ln

[
1− (1− q)

E(p)

T

]
(28)

dϕTs

dp
=

1
T

dE
dp

1− (1− q)E
T

(29)
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From eq(27):

dϕ

dp
=

pA(p, T )

B∥
+

1

B∥

dB∥

dp
+

n− 1

p

1

B∥
[B∥ −B⊥] (30)

By equating the RHS of eq(27) and eq(29);

1
T

dE
dp

1− (1− q)E
T

=
1

B∥

[
pA+

dB∥

dp
+

n− 1

p
[B∥ −B⊥]

]
(31)

[T + (q − 1)E] =
dE

dp

B∥

pA+
dB∥
dp

+ n−1
p
[B∥ −B⊥]

(32)

4.4 Analysis of the equilibrium function

The explanation of the term ϕTs in eq(28) is linked to Boltzmann Gibbs (BG)
and Tsallis statistics where both theories approach large collections of particles.
However, Tsalli statistics -parametrized by q, and TT- is a generalization of the
Boltzmann Gibbs statistics [9], [11].

• Boltzmann Gibbs Entropy is given by:

S = −kΣpi ln pi

where k is a positive constant is equal to 1 according to the convention of
natural units, and pi is the probability related to the event

• Tsalli Entropy which depends on the parameter q:

Sq =
k

1− q
Σpi(1− pq−1

i )

Boltzmann statistics is recovered when q −→ 1 [9].
A mathematical explanation of the deviation between BG and Tsallis statistics is
as follows:
Starting from ϕTs =

1
1−q

[
ln[1− (1− q)E(p)

T

]
:

let x = −(1− q)E
T
and Taylor expand ln (1 + x) around x = 0

ln (1 + x) = Σ∞
n=1(−1)n+1x

n

n
(33)

Subsequently,

lim
q−→1

1

1− q
ln

[
1− (1− q)

E

T

]
=

[
1

1− q

[
−(1− q)

E

T

]
+

1

2

[
(1− q)

E

T

]2
− 1

3

[
(1− q)

E

T

]3
+ ......

]
=

−E

T

(34)
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Therefore, Tsallis statistics is reduced giving BG equilibrium distribution func-
tion ϕ = exp −E

TB
.

The Boltzmann-Jüttner distribution [q = 1, TT = TB] is simulated by the dotted
line in Fig.(4). Yet, the solid line models the Tsallis distribution for a broader range
of examined charmed quark energies. It appears as a deviation from the Boltzmann
distribution. Boltzmann distribution is sufficient when the ratio of the transport
coefficients specified by the right-hand side of eq(32) is constant. However, when
the ratio is linear in E, the statistics are described by Tsallis distribution. Fig.(4)
also provides Tsallis statistics parametrization values [q = 1.08, TT = 123.6MeV ]
according to the linear regression fit.[9], [11] The values of transport coefficients
can be calculated from [12]

Figure 4: Fig.(4) Linear regression for the coefficients ratio of eq(32) for a 1.5GeV
charm quark thermalized at T = 0.5GeV in gluon medium

5 Conclusion

The study of Quark-gluon plasma (QGP) is an access to the micro-second old
universe. It is a state of matter that can be produced in high-energy heavy-
ion collisions. Heavy-ion collisions at Large Hadron Collider (LHC) at CERN
produce a large number of heavy quarks. Studying heavy quarks in QGP provides
insights into the behavior of matter at very high temperatures and densities. The
equilibrium of HQs inside QGP is affected by the temperature and density of the
QGP, as well as the transport properties of HQs, their masses, and their momenta.
Through the transport equations; BTE and FPE, we have demonstrated that
the shape of the equilibrium distribution is formed by the ratio between drag
and diffusion coefficients. Finally, with the help of the calculated values of the
transport coefficients, we have demonstrated that the thermalization of charm
quarks by collisional processes with gluons results in a spectral configuration well
parameterized by the Tsallis distribution with two parameters q and T.
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