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1 Abstract

Multiparticle production (MP) stands as a crucial subject within high-energy physics, of-
fering valuable insights into the fundamental aspects of strong interactions and providing
a deeper understanding of the structure of matter. Multiparticle processes occur at high
energy levels, with a notable presence of hadrons among the produced particles. The inves-
tigation of MP has led to the discovery of jets, phenomena that can be studied in processes
producing energetic partons. One prevalent example of such processes is electron-positron
annihilation, which we consider for the analysis of MP at high energy. The challenge arises
at higher energy levels due to the increase of inelastic channels, making it difficult to de-
scribe MP using conventional methods. To tackle this, statistical methods are employed in
the analysis of MP processes, especially in the context of e+e− annihilation where the num-
ber of secondary particles is large. A useful approach involves treating QCD jets as Markov
branching processes, enabling a probabilistic description of the evolution of parton showers
within hadrons. This stochastic approach provides clear and comprehensive solutions for
the parton multiplicity distribution.
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2 Introduction

Multiparticle production (MP) constitutes a significant domain within high-energy physics,
with modern accelerators enabling thorough investigations into these processes. The study
of multiparticle production serves as a vital testing ground for Quantum Chromodynamics
(QCD), along with various phenomenological models.

Current accelerator experiments conducted within high-energy physics are primarily fo-
cused on uncovering potential deviations from the standard model, identifying dark matter
particles, and discovering new states of heavy flavors. Concurrently, in the realm of rela-
tivistic nuclear physics, closely related to high-energy physics, significant efforts are directed
towards exploring quark-gluon matter.

In such experiments, a key observable is the multiplicity, a measure denoting the number
of secondary particles produced in the process of multiparticle production represented as

a+ b → c1 + c2 + c3 + ...+ cn

where the focus lies not only on the resultant particles but also on the statistical attributes
characterizing their multiplicity phenomenon.

To grasp the intricacies of multiplicity, we rely on statistical metrics such as the mean
value and variance. These metrics play a pivotal role in understanding the distribution of
secondary particles. For instance, the probability mass function

Pk =
Nk

Σi=kNi

(1)

sheds light on the likelihood of observing k secondary particles. The average multiplicity

⟨n⟩ = ΣkPk =
ΣkNk

ΣNk

(2)

serves as a valuable metric, calculated as the weighted sum of multiplicities, taking into
account their respective probabilities. Furthermore, to capture the spread or dispersion of
the multiplicity distribution, we introduce the variance, expressed as the difference between
the average squared multiplicity and the square of the average multiplicity

D2 = ⟨n2⟩ − ⟨n⟩2 (3)
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The annihilation process of electron-positron pairs, Figure 1, stands out as one of the most
effective means to investigate MP phenomenon. When an electron collides with a positron,
they can annihilate into either a virtual photon or a Z0 boson. Both the virtual photon
and the Z0 boson subsequently decay into pairs of fermions and antifermions, specifically
quarks and antiquarks.

e+e− → (γ/Z0) → qq̄

This leads to the emission of gluons and the splitting of gluons into quark-antiquark pairs,
resulting in a parton shower. This is commonly referred to as the cascade stage. Perturba-
tive QCD is effective in explaining this stage of parton fission at high energy levels, as the
strong coupling constant αs is small at this energy. The subsequent stage, where partons no
longer have high energy, involves hadronization which encapsulates the transformation of
quarks and gluons into observable hadrons. In this stage, perturbative QCD is not applica-
ble, prompting the use of phenomenological models to describe hadronization. The process
concludes with the formation of hadrons and their potential decays.

Figure 1: Diagram of e+e− annihilation

This comprehensive journey, from the annihilation of electron-positron pairs to the emer-
gence of observable hadrons, provides valuable insights into multiparticle production, high-
lighting the need for an alternative method to describe the phenomenon.
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3 QCD jets as Markov branching processes

3.1 Elementary Processes in QCD Jets

To study multiparticle production at high energy, we consider QCD jets as Markov branch-
ing processes. We interpret the natural QCD evolution parameter

Y =
1

2πb
ln

[
1 + αb ln

(
Q2

µ2

)]
, (4)

where 2πb = 1
6
(11Nc − 2Nf ) for a theory with NC colors and Nf flavors, as the thickness

value of a quark or a gluon that gives rise to a gluon or a quark jet.

There are three main elementary processes that contribute to the overall gluon or quark
distribution inside QCD jets with different weights:

• gluon fission: g → g + g, with A∆Y denoting the probability that a gluon in the
infinitesimal interval ∆Y will transform into two gluons

• quark bremsstrahlung: q → q + g, with Ã∆Y denoting the probability that a quark
in the infinitesimal interval ∆Y will radiate a gluon with the quark continuing on its
original trajectory with modified energy and momentum

• quark pair creation: g → q + q̄, with B∆Y denoting the probability that a quark-
antiquark pair in the infinitesimal interval ∆Y will be created from a gluon

We assume that A, Ã, and B are Y-independent constants and that each individual parton
acts independently from the others, always with the same infinitesimal probability.

3.2 Generating Functions for Jet Evolution

We introduce the infinitesimal generating functions for gluon jet and quark jet, respectively,
as

w(g)(ug, uq) =
∞∑

mg ,mq=0

a(g)mg ,mq
umg
g umq

q = (−A−B)ug + Au2
g +Bu2

q (5)

w(q)(ug, uq) =
∞∑

mg ,mq=0

a(q)mg ,mq
umg
g umq

q = −Ãuq + Ãuqug (6)
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Let us define Pmg ,mq ;ng ,nq(Y ) to be the probability that mg gluons and mq quarks will be
transformed into ng gluons and nq quarks respectively over a jet of thickness Y . It then
follows that the probability generating function for a gluon jet is

G(ug, uq;Y ) =
∞∑

ng ,nq=0

P1,0;ng ,nq(Y )ung
g unq

q (7)

and the probability generating function for a quark jet is

Q(ug, uq;Y ) =
∞∑

ng ,nq=0

P0,1;ng ,nq(Y )ung
g unq

q (8)

When considering the evolution of the total parton population (consisting of both gluons and
quarks) through thickness Y , a probabilistic perspective allows us to treat this population as
if it were made up of independent sub-populations. Each of these sub-populations behaves
as if it originated from a single initial quark or gluon. In essence, the overall evolution can
be viewed as a sum of independent parton populations, each starting with one quark or
gluon. This can be expressed mathematically as follows:

∞∑
ng ,nq

Pmg ,mq ;ng ,nq(Y )ung
g unq

q = [G(ug, uq;Y )]mg [Q(ug, uq;Y )]mq (9)

Since the process is homogeneous in Y , the transition probabilities obey Chapman- Kol-
mogorov equations:

Pmg ,mq ;ng ,nq(Y + Y ′) =
∞∑
lg ,lq

Pmg ,mq ;lg ,lq(Y )Plg ,lq ;ng ,nq(Y
′) (10)

For a gluon jet, we get

P0,1;ng ,nq(Y + Y ′) =
∞∑
lg ,lq

P1,0;lg ,lq(Y )Plg ,lq ;ng ,nq(Y
′) (11)

and for a quark jet, we get

P1,0;ng ,nq(Y + Y ′) =
∞∑
lg ,lq

P0,1;lg ,lq(Y )Plg ,lq ;ng ,nq(Y
′) (12)

From (9) and (10), we get

G(ug, uq;Y + Y ′) = G[G(ug, uq;Y
′), Q(ug, uq;Y

′);Y ] (13)

Q(ug, uq;Y + Y ′) = Q[G(ug, uq;Y
′), Q(ug, uq;Y

′);Y ] (14)
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From (5)-(8), we can see that

G(ug, uq; ∆Y ) = ug + w(g)(ug, uq)∆Y +O(∆Y ) (15)

Q(ug, uq; ∆Y ) = uq + w(q)(ug, uq)∆Y +O(∆Y ) (16)

Substituting (15) and (16) into (13) and (14), while substituting Y ′ with ∆Y , then dividing
both sides by ∆Y and letting ∆Y → 0, we obtain

∂G(ug, uq;Y )

∂Y
=

∂G

∂ug

w(g)(ug, uq) +
∂G

∂uq

w(q)(ug, uq) (17)

∂Q(ug, uq;Y )

∂Y
=

∂Q

∂ug

w(g)(ug, uq) +
∂Q

∂uq

w(q)(ug, uq) (18)

3.3 Differential Equations for QCD Jets

We can recognize the forward Kolmogorov equations for the generating functions of the
transition probability Pmg ,mq ;ng ,nq(Y ) in (17) and (18) The corresponding backward Kol-
mogorov equations follow from (13) and (14)

∂G

∂Y
= w(g)[G(ug, uq;Y ), Q(ug, uq;Y )] (19)

∂Q

∂Y
= w(q)[G(ug, uq;Y ), Q(ug, uq;Y )] (20)

Substituting (5) and (6) into (19) and (20), we obtain

∂G

∂Y
= −AG+ AG2 −BG+BQ2 (21)

∂Q

∂Y
= −ÃQ+ ÃQG (22)

We can find the probability for a gluon or a quark to produce ng gluons and nq quarks in
the interval Y +∆Y through the main elementary processes. For a gluon jet

P1,0;ng ,nq(Y +∆Y ) =(1− Ãnq∆Y − Ang∆Y −Bng∆Y )P1,0;ng ,nq(Y )

+Ãnq∆Y P1,0;ng−1,nq(Y ) + A(ng − 1)∆Y P1,0;ng−1,nq(Y )

+B(ng + 1)∆Y P1,0;ng+1,nq−2(Y ) +O(∆Y )

(23)
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Dividing both sides by ∆Y and letting ∆Y → 0, we obtain the following system of differ-
ential equations

dP1,0;ng ,nq(Y )

dY
=(−Ãnq − Ang −Bng)P1,0;ng ,nq(Y )

+ÃnqP1,0;ng−1,nq(Y ) + A(ng − 1)P1,0;ng−1,nq(Y )

+B(ng + 1)P1,0;ng+1,nq−2(Y )

(24)

For the gluon exclusive cross-sections in a gluon jet or a quark jet, we respectively have the
following

dP1,0;ng ,0(Y )

dY
=(−A−B)ngP1,0;ng ,0(Y ) + A(ng − 1)P1,0;ng−1,0(Y ) (25)

dP0,1;ng ,1(Y )

dY
=− ÃP0,1;ng ,1(Y )− (B + A)ngP0,1;ng ,1(Y )

+ÃP0,1;ng−1,1(Y ) + A(ng − 1)P0,1;ng−1,1(Y )

(26)

The corresponding generating functions are

∂G

∂Y
= −AG+ AG2 −BG (27)

∂Q

∂Y
= −ÃQ+ ÃQG (28)

3.4 Explicit solutions in particular cases

While obtaining explicit solutions in terms of the generating functions, (27) and (28), or of
the exclusive cross sections, (23), is generally challenging, it is possible to derive approximate
solutions for specific cases. These approximations prove to be particularly intriguing and
contribute to a deeper comprehension of the overall problem.

We make the approximation B = 0, A ̸= Ã ̸= 0, meaning that we don’t allow gluons to
split into quark-antiquark pairs. In other words, from the definition of B, there is no room
for flavors in the theory. Then (27) and (28) become

∂G

∂Y
= −AG+ AG2 (29)

∂Q

∂Y
= −ÃQ+ ÃQG (30)
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The gluon exclusive cross-sections in a gluon jet or a quark jet satisfy the following

dP1,0;ng ,0(Y )

dY
= −AngP1,0;ng ,0(Y ) + A(ng − 1)P1,0;ng−1,0(Y ) (31)

dP0,1;ng ,1(Y )

dY
=− ÃP0,1;ng ,1(Y )− AngP0,1;ng ,1(Y )

+ÃP0,1;ng−1,1(Y ) + A(ng − 1)P0,1;ng−1,1(Y )

(32)

with the following initial conditions

P1,0;1,0(0) = 1, P1,0;ng ,0(0) = 0, ∀ng > 1 (33)

P0,1;0,1(0) = 1, P0,1;ng ,1(0) = 0, ∀ng ≥ 1 (34)

3.4.1 Gluon Jet

From (31) and (33), we obtain

P1,0;1,0(Y ) = e−AY (35)

P1,0;ng ,0(Y ) = e−AY (1− e−AY )ng−1, (36)

where the average gluon multiplicity is ⟨ng⟩ = eAY .

The normalized exclusive cross-section for producing ng gluons is

σ
(g,0)
ng

σtot

= P1,0;ng ,0(Y ) =
1

⟨ng⟩

(
1− 1

⟨ng⟩

)ng−1

(37)

which corresponds to a Furry-Yule distribution. The variance is

D2 = eAY (eAY − 1) (38)

Thus we can obtain the second correlative moment to be

f2 = e2AY − 2eAY (39)

and the corresponding generating function is

G =
∞∑

ng=0

ung
g P1,0;ng ,0(Y ) =

uge
−AY

1− ug(1− e−AY )
(40)
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3.4.2 Quark Jet

From (32) and (34), we obtain

P0,1;0,1(Y ) = e−ÃY (41)

P0,1;ng ,1(Y ) =
µ(µ+ 1)...(µ+ ng − 1)

ng!
e−ÃY (1− e−AY )ng , (42)

where µ = Ã
A
and the average gluon multiplicity is ⟨ng⟩ = µ(eAY − 1).

We have the variance as
D2 = µeAY (eAY − 1) (43)

We obtain the second correlative moment to be

f2 =
⟨ng⟩2

µ
(44)

Then the normalized exclusive cross-section for producing ng gluons is

σ
(0,q)
ng

σtot

= P0,1;ng ,1(Y ) =
µ(µ+ 1)...(µ+ ng − 1)

ng!

[
⟨ng⟩

⟨ng⟩+ µ

]ng
[

µ

⟨ng⟩+ µ

]µ
(45)

This is a Polya-Egenberger distribution, where µ is takes half-integer values.

The corresponding generating function is

Q =
∞∑

ng=0

ung
g uqP0,1;ng ,1(Y ) = uq

[
e−AY

1− ug(1− e−AY
)

]µ
(46)

3.4.3 Hadronization

We obtained the second correlative moment to be a positive value but experimental data
show that it can take on negative values. To explain this, we add the hadronization stage
to the gluon quark cascade.

We use the binomial distribution P (X = k) = Ck
Np

k(1 − p)N−k to obtain the generating
function of hadronization

Q(H) =
N∑
k=0

Pkz
k = (1− p+ pz)N (47)

The average multiplicity is

⟨k⟩ = ∂Q(H)

∂z

∣∣∣∣
z=1

= NP (1− p+ pz)N−1 = Np (48)
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Then we find p to be

p =
⟨k⟩
N

(49)

We can then get the second correlative moment as

f2 = Np(N − 1)p− (Np)2 =
−⟨k⟩2

N
< 0 (50)

Combining the two stages, we get the generating function as

Q(z) =

Mg∑
m=0

P P
mPH

n (51)

For the first stage, we have P P
m as follows

P P
m =

kp(kp + 1)...(kp +m− 1)

m!

(
kp

kp +m

)kp ( m

kp +m

)m

, (52)

where kp = µ = Ã
A
and m = ⟨mg⟩. The corresponding quark generating function is

Q(q) =

(
kp

kp +m

)kp (
1− z

m

kp +m

)−kp

(53)

The parton generating function is

Q(P ) =

(
k′
p

k′
p +m′

)k′p (
1− z

m′

k′
p +m′

)−k′p

, (54)

where k′
p = 2kp and m′ = 2m. From now on we will drop the prime and use the convention

that m is the average multiplicity for two quarks. Then

P P
m =

kp(kp + 1)...(kp +m− 1)

m!

(
kp

kp +m

)kp ( m

kp +m

)m

(55)

is the multiplicity distribution for partons at the first stage.

Then from (47), (51) becomes

Q(z) =

Mg∑
m=0

P P
m

[
1 +

n

N
(z − 1)

](2+αm)N

, (56)

where n = nq and α = ng

nq
= Ng

Nq
. We can then obtain the second correlative moment as

f2 = Q′′(z)
∣∣∣
z=1

−
(
Q′(z)

∣∣∣
z=1

)2

=

(
α2m2

kp
+ α2m− 2 + αm

N

)
(nh)2 (57)

At low energy, m ≈ 0, so we can neglect the terms with m and the second correlative
moment becomes

f2 =
−2

N
(nh)2 < 0 (58)
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3.5 Gluon Decay of Bottomonium

Bottomonium particle is an upsilon meson made up of a bottom quark and antiquark.
According to QCD, it can decay into 3 gluons and each gluon can produce hadrons. We
can use the gluon jet and predict the multiplicity distribution of hadrons for this decay.

The multiplicity distribution for a single gluon is

P (g)
m =

1

ng

(
1− 1

ng

)m−1

(59)

The corresponding generating function is

G(z) =
z

m

[
1− z

(
1− 1

m

)]−1

(60)

For a three-gluon jet, the generating function is

G(3g) =
z3

m3

3

[
1− z

(
1− 1

m
3

)]−3

, (61)

where m is the average multiplicity for all 3 gluons. Then the multiplicity distribution is

Pm =
1

m!

∂m

∂zm
z3(
m
3

)3
=

(m− 1)(m− 2)

2
(
m
3

)2 (
1− 1

m
3

)m−3 (62)

We now add hadronization to the gluon cascade in the following way

Q(s, z) =
∞∑

m=3

P (g)
m

[
1− ng

Ng

(1− z)

]mNg

=
∞∑

m=3

(m− 1)(m− 2)

2
(
m
3

)2 (
1− 1

m
3

)m−3 [
1− ng

Ng

(1− z)

]mNg
(63)

Then the generating function for the 3-gluon is

Q(g) =
∑

P (g)
m zm =

[
1− z

(
1− 1

m
3

)]−3

(
m
3

)3 (64)
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The minimum number of gluons here is equal to three, but we can have m′ more gluons,
making the total number of gluons m = 3 +m′. Then (63) becomes

Q(s, z) =
∞∑

m′=0

P
(g)
m′

[
1− ng

Ng

(1− z)

](3+m′)Ng

(65)

, where

P
(g)
m′ =

(m′ + 2)(m′ + 1)

2
(
m
3

)2 (
1− 1

m
3

)m−3

(66)

Then we get the second correlative moment as

f2 =

(
1

3
m′2 +m′ − m′ + 3

Ng

)(
nh
g

)2
(67)

Experimental data show that f2 = −2.57 < 0 which indicates that m ≈ 0, i.e., we can
neglect the terms with m making the second correlative moment

f2 =
−3

Ng

(
nh
g

)2
(68)
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4 Analysis of Multiplicity Distribution

We developed a C++ program that models the multiplicity distribution of charged particles
produced in electron-positron annihilation into hadrons at energy of 22 GeV. We used the
following data published in this [2] paper.

Charged Multiplicity (n) Multiplicity Distribution (Pn)
2 0.1631 ± 0.0895
4 1.7797 ± 0.2557
6 7.8243 ± 0.5185
8 16.7981± 0.7497
10 22.9196 ± 0.8749
12 21.5560± 0.8322
14 14.5702± 0.6494
16 8.2160± 0.4705
18 3.6614 ± 0.2927
20 1.6538± 0.1931
22 0.5892 ± 0.1048
24 0.1637± 0.0513
26 0.0697 ± 0.0312
28 0.0355± 0.0253

Table 1: Charged Multiplicity Distribution

We found the parameters of Pn = Ω
∑M

m=0 PmC
n
(2+αm)N(

nh

N
)n(1 − nh

N
)(2+αm)N−n at 22 GeV

to be as follows

kp 3.162 ± 2.504
m 2.095 ± 0.795
nh 4.651 ± 0.304
N 27.352 ± 14.204
α 0.205 ± 0.071
Ω 2.000 ± 0.0354
χ2 1.663

Table 2: Multiplicity Distribution Parameters
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We used ROOT data analysis software to draw the multiplicity distribution, see Figure 2.

Figure 2: Multiplicity Distribution at 22 GeV

Comparing our result, Figure 2, with the one, Figure 3, published in the paper, we can see
that the distributions are very similar.

Figure 3: Multiplicity Distribution at 22 GeV
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5 Conclusion

Examination of multiparticle production in high-energy physics, particularly in the con-
text of electron-positron annihilation, has provided valuable insights into the fundamental
aspects of strong interactions. The study of MP has not only led to the identification of
intriguing phenomena like jets but has also presented challenges, especially at higher en-
ergy levels where inelastic channels increase, posing difficulties for conventional methods of
description.

To address these challenges, our analysis employed statistical methods, with a specific focus
on the Two Stage Model (TSM), which treats QCD jets as Markov branching processes.
This stochastic approach allowed for a probabilistic description of parton showers within
hadrons, yielding clear and comprehensive solutions for the parton multiplicity distribution.

Our study applied the TSM to calculate the multiplicity distribution for both neutral and
charged particles in electron-positron annihilation at high energy. The results were extended
to the decay of bottomonium into three gluons with hadronization.

Moreover, we wrote a C++ code that shows the multiplicity distribution of charged particles
produced during the process of electron-positron annihilation into hadrons at an energy of
22 GeV and our findings demonstrated that the Two Stage Model agrees with experimental
data on multiplicity distribution.

In summary, our investigation has contributed to the advancement of our knowledge in
the realm of multiparticle production, showcasing the applicability and reliability of the
Two Stage Model in describing complex processes at high energy levels. The calculated
multiplicity distributions for various scenarios, along with the consistency with experimen-
tal data, underscore the significance of our approach in providing a robust framework for
understanding and modeling multiparticle production in high-energy physics.
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