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Abstract

Energy loss in a Quantum Chromodynamics (QCD) plasma is currently
an area of active research, as it helps us understand the underlying prin-
ciples of QCD, which governs the behavior of quarks and gluons and the
fundamental properties of the early universe.

In this project, numerical estimates of the energy loss of partons (quarks
and gluons) due to elastic and inelastic or radiative processes in a QCD
plasma are performed.
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1 Introduction

In this report the vacuum speed of light (c), the reduced Planck constant
(h̵) and the Boltzmann constant (kB) are set to 1. In these units, both length
and time are expressed in inverse energy units.

1.1 Basics of QGP

Quark-gluon plasma (QGP) is a deconfined state of quarks and gluons.
In a plasma the number of particles within the Debye screening length (λD):
nλ3

D ≫ 1, where n is the particle number density.
In normal conditions, quarks are confined within hadrons due to the

strong force, which acts as a color potential. However, when the energy den-
sity or temperature reaches a critical point (ϵcr ≈ 1 Gev

fm3 ; Tcr ≈ 170 MeV), the
distance between two hadrons can be smaller than the hadron diameter, and
quarks are no longer confined within individual hadrons [1]. Instead, they
become deconfined and can move freely in the quark-gluon plasma, which is
a state of matter that existed in the early universe just after the Big Bang
or can be created in high-energy collisions experiments [2].

1.2 Evolution of QGP

Figure 1: Space-time evolution of a heavy ion collision [3].
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This space-time diagram shows the evolution of high-energy particles and
QGP after the collision of heavy ions like Pb/Au. High-energy particles
(e.g., light quarks, heavy quarks, and gluons) are created during the pre-
equilibrium phase. It is expected that after a proper time τ0 ≈ 1 fm of the
collision, the QGP medium enters a state of local thermal equilibrium. Some
of high-energy particles may pass through the medium and change their dis-
tribution function. The ratio of the outgoing to the initial distribution can
be connected to the nuclear suppression factor RAA, which is related to ex-
perimental observables in high-energy collision physics and gives information
about the medium.

At some point in time (about τf ≈ 10 fm and Tf ≈ 120 MeV) the ex-
pansion rate is so high that it does not let particles interact. So, particles
stop exchanging momentum. That is called the kinetic freeze-out, and Tf

is called the kinetic freeze-out temperature. At the freeze-out hyper-surface,
the quarks and gluons undergo hadronization.

1.3 Evolution equations

We have two types of evolution in QGP:
1. evolution of the medium which is dictated by hydrodynamics equation:

∂µT µν = 0, where T µν is a stress-energy tensor;
2. evolution of energetic particles which is dictated by the Boltzmann

transport equation.
Our project considers the second type of evolution.

1.4 Project goals

We aim to estimate the radiative energy loss of gluons inside a gluonic
plasma and the energy loss of heavy quarks through collisional processes in
a QGP. This will help us better understand the dynamics and properties of
the QCD plasma.
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2 Passage of energetic particles in the QCD

plasma

In the high-energy regime, where QGP is formed, the gluonic distribution
dominates over the quark distribution. So, it is common to approximate QGP
as a gluonic plasma, neglecting the effects of quark dynamics, at extremely
high temperatures.

Among various inelastic processes involving quarks and gluons, the pro-
cess: g(k1) + g(k2) → g(k3) + g(k4) + g(k5) plays a major role in the system’s
equilibration.

Figure 2: One of the Feynman diagrams for g(k1) + g(k2) → g(k3) + g(k4) +
g(k5) with notations used below. Assuming that the incoming gluons have
no transverse momentum, i.e. they are traveling along the z-axis.

2.1 Radiative energy loss in a gluonic plasma

The energy loss per collision can be estimated by multiplying the proba-
bility of radiating a gluon and the energy of the gluon [4]:

ϵ = ∫ d2k⊥dη
dng

d2k⊥dη
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Number of gluons emitted

× k0®
Energy carried by each gluon

× θ(Λ−1 − τF )θ(E − k0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Constraints

=

= ∫
k⊥= E

coshη

k⊥=Λcoshη
d2k⊥dη

dng

d2k⊥dη
× k⊥ cosh η, (1)

where k⃗⊥ is the transverse momentum of the emitted gluon, η = 1
2 ln

k0+k5z
k0−k5z

is the rapidity of the emitted gluon, ng is the number of emitted gluons,
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k0 = k⊥ cosh η is the energy of the emitted gluon,1 θ is the Heaviside step
function, Λ−1 is the interaction time, τF ≈ coshη

k⊥
is the formation time of the

gluon,2 and E is the energy of the incoming high-energy gluon (the upper
limit for the energy of the emitted gluon). The first θ-funstion sets that the
effective formation time, τF must be smaller than the interaction time, Λ−1.3

If the transverse momentum transfer, q⊥ is much greater than k⊥, the
spectrum of the emitted gluon from the gg → ggg process is given by

dng

d2k⊥dη

RRRRRRRRRRRq⊥≫k⊥

= CAαs

π2

1

k2⊥
, (2)

where CA = 3 is the Casimir invariant for the SU(3) adjoint representation,
and αs is the temperature-dependent strong coupling constant. We can re-
place d2k⊥ with k⊥dk⊥dθ in Eq. (1). ϵ is then obtained as

ϵ∣q⊥≫k⊥ =
CAαs

π2
× ∫

E
coshη

Λcoshη
∫

π

0
∫

0.5

−0.5
dk⊥dθdη ×

1

��k
2⊥
× ��k

2
⊥ cosh η =

= CAαs

π2
× ∫

π

0
dθ × ∫

0.5

−0.5
dη (cosh η∫

E
coshη

Λcoshη
dk⊥) = (3)

= CAαs

π
× ∫

0.5

−0.5
dη (E −Λcosh η) ≈ αs × (0.95 ×E − 1.00 ×Λ).

For αs = 0.3 and Λ = 0.3 GeV,4 the energy loss per collision for a E = 5
GeV gluon is approximately 1.3 GeV. From the analytical form of ϵ it can
be seen that increasing the strong coupling (αs), the interaction time (Λ−1)
or the energy of the incoming high-energy gluon (E) results in an increase
the energy loss per collision.

If k⊥ ≳ q⊥, the spectrum of the emitted gluon in the medium can be given
by Gunion-Bertsch formula [7]:

dng

d2k⊥dη
= CAαs

π2

q2⊥
k2⊥[(k⃗⊥ − q⃗⊥)2 +m2

D]
= (4)

= CAαs

π2

q2⊥
k2⊥[ω2 + a2]

, (5)

1We can parameterize k0 and k5z in terms of k⊥ and η due to masslessness of gluons:
k20 + k25z = k2⊥.

2The formation time for gluons is τF = 1
2
τQED ≈ 1

2
2k0

k2
⊥

[5]. For calculating the formation

time in QED, τQED, see Appendix A.
3In this limit, the intensity of induced radiation is additive in the number of scatterings.
4In this report we consider Λ ≈ T . For more rigorous estimates, see [6].
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where ω = k⊥−q⊥ cos θ, a2 = q2⊥ sin2 θ+m2
D, θ = ∠(k⃗⊥, q⃗⊥), mD ≈

√
4παsT is the

thermal (Debye) mass of the gluon required to shield the infrared divergence,5

and T is the temperature of the medium. We can replace d2k⊥ with k⊥dωdθ
in Eq. (1) and use the average values of q⊥ and q2⊥:

⟨q⊥⟩ =
1

σel
∫

s
4

m2
D

dq2⊥
dσel

dq2⊥
q⊥ =

2
√
smD√

s + 2mD

,

⟨q2⊥⟩ =
1

σel
∫

s
4

m2
D

dq2⊥
dσel

dq2⊥
q2⊥ =

sm2
D

s − 4m2
D

ln( s

4m2
D

), (6)

where s ≈ 6ET [5], and σel is the cross section for the gg → gg scattering
(see Appendix B for details). The choice of the upper limit of integration is
justified in the Appendix C. ϵ is then obtained as

ϵ = CAαs

π2
× ⟨q2⊥⟩ × ∫

π

0
dθ∫

0.5

−0.5
dη (cosh η∫

E
coshη

−⟨q⊥⟩ cos θ

Λcoshη−⟨q⊥⟩ cos θ
dω

ω2 + a2
) =

= CAαs

π2
× ⟨q2⊥⟩ × ∫

π

0
dθ

⎡⎢⎢⎢⎢⎣

1

a ∫
0.5

−0.5
dη
⎛
⎝
cosh η ×

⎧⎪⎪⎨⎪⎪⎩
tan−1

E
coshη − ⟨q⊥⟩ cos θ

a
− (7)

− tan−1 Λcosh η − ⟨q⊥⟩ cos θ
a

⎫⎪⎪⎬⎪⎪⎭

⎞
⎠

⎤⎥⎥⎥⎥⎦
.

For αs = 0.3 and Λ = 0.3 GeV, the energy loss per collision for a E = 5 GeV
gluon is approximately 0.3 GeV.

2 4 6 8 10
E, GeV

0.5

1.0

1.5

2.0

2.5

ϵ, GeV

q⊥ ≫ k⊥

k⊥ ≳ q⊥

Figure 3: Energy loss per collision as a function of energy of the incoming
high-energy gluon for the gg → ggg process (αs = 0.3, Λ ≈ T = 0.3 GeV).

5In this report we considermD ≈ g(T )T , where g =
√
4παs is the color charge. However,

the Debye mass can be calculated from the quantum field theory [8].
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As the energy loss of high-energy gluon is equal to the energy which is
taken away by the emitted gluon, we can estimate the energy loss of high-
energy gluon by multipling the interaction rate, Λ and the energy loss per
collision, ϵ:

−dE
dx
= ϵ ×Λ. (8)

For αs = 0.3 and Λ = 0.3 GeV, the energy loss per unit distance traveled for
a E = 5 GeV gluon is approximately 0.4 GeV2 for q⊥ ≫ k⊥ and 0.10 GeV2 for
k⊥ ≳ q⊥.

2 4 6 8 10
E, GeV

0.2

0.4

0.6

0.8

- dE
dx
, GeV2

q⊥ ≫ k⊥

k⊥ ≳ q⊥

Figure 4: Energy loss per unit distance traveled as a function of energy of the
incoming high-energy gluon for the gg → ggg process (αs = 0.3, Λ ≈ T = 0.3
GeV).

In the limit of q⊥ ≫ k⊥, we observe a higher energy loss for gluons. This
can be attributed to the dominance of soft gluons (characterized by small
values of k⊥) in the gluon spectrum.

2.2 Boltzmann transport equation and energy loss

In this paragraph, we follow the exposition presented in the work [9].
During the propagation through QGP heavy quarks (Q) dissipate energy

by collisions with light quarks (q) and gluons (g): Qq → Qq, Qq̄ → Qq̄, and
Qg → Qg.

The evolution of high-energy particles inside QGP is given by the Boltz-
mann transport equation:

df

dt
= C[f], (9)
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where f(x⃗, p⃗, t) is the one-particle phase-space distribution function of high-
energy particles (in the present case f stands for heavy quarks distribution)
and C[f] is the collision term.

The assumption of uniformity in the plasma and absence of any external
force leads to

∂f

∂t
= C[f]. (10)

The right-hand side of Eq. (10) represents a collision integral given by [10]

∂f(p⃗, t)
∂t

= ∫ d3k

⎡⎢⎢⎢⎢⎢⎢⎣

W (p⃗ + k⃗, k⃗)f(p⃗ + k⃗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Transition from p⃗+k⃗ to p⃗: “gain”

− W (p⃗, k⃗)f(p⃗)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Transition from p⃗ to p⃗−k⃗: “loss”

⎤⎥⎥⎥⎥⎥⎥⎦

.

(11)
The function W (p⃗, k⃗) is

W (p⃗, k⃗) = γ ∫
d3q

(2π)3
f ′(q⃗)vσ(p⃗,q⃗)→(p⃗−k⃗,q⃗+k⃗), (12)

where p⃗ is the 3-momentum of the incoming high-energy particle, k⃗ is the
3-momentum transfer, q⃗ is the 3-momentum of the incoming particle of the
medium, f ′(q⃗) is the phase-space distribution of particles of the medium, in
the present case it stands for light quarks and gluons (assumed to be position
and time independent), v is the relative velocity, σ denotes the cross section,
and γ is the spin and color degeneracy of particles of the medium.

Expanding the gain term about p⃗ to second order in k⃗ by considering
small momentum transfer leads to the Fokker-Planck equation:

∂f

∂t
= ∫ d3k

⎡⎢⎢⎢⎢⎣
ki
∂ (W (p⃗, k⃗)f(p⃗, t))

∂pi
+ 1

2
∑
i,j

kikj
∂2 (W (p⃗, k⃗)f(p⃗, t))

∂pi∂pj

⎤⎥⎥⎥⎥⎦
=

= ∂

∂pi
(Ai(p⃗)f(p⃗, t)) +

∂2

∂pi∂pj
(Bij(p⃗)f(p⃗, t)) , (13)

where we have introduced the transport coefficients of drag and diffusion,
respectively:

Ai(p⃗) = ∫ d3kkiW (p⃗, k⃗), (14)

Bij(p⃗) =
1

2 ∫
d3kkikjW (p⃗, k⃗). (15)

It is generally believed that the Fokker-Planck equation describes well the
evolution of particles in a medium, which is in a state of thermal equilibrium.

9



The drag and diffusion coefficients are given by [10]

Ai(p⃗) ≡ ⟪pi − p′i⟫, (16)

Bij(p⃗) ≡
1

2
⟪(pi − p′i)(pj − p′j)⟫, (17)

where p⃗′ = p⃗ − k⃗ is the 3-momentum of the scattered incoming high-energy
particle.6 This implies that the dot product of vectors pi and Ai is

piAi = ⟪p2 − p⃗ ⋅ p⃗′⟫. (18)

The energy loss per unit distance traveled is equal to [11]

−dE
dx
= ⟪E

2 −EE′

p
⟫, (19)

where E and E′ is the energy of the high-energy particle before and after the
collision respectively.

So, a subtraction of Eq. (19) from Eq. (18) is

piAi + p
dE

dx
= ⟪p2 − p⃗ ⋅ p⃗′ −E2 +EE′⟫ = −⟪E(E −E′) − p⃗ ⋅ (p⃗ − p⃗′)⟫ =

= −⟪pµ(pµ − p′µ)⟫ = −
1

2
⟪(pµ − p′µ)2⟫ = −B00 +Bii, (20)

where B00 = 1
2⟪(E −E′)2⟫ and Bii = 1

2⟪(pi − p′i)2⟫.
Thus,

−dE
dx
= piAi +B00 −Bii

p
. (21)

Since Ai and Bij depend only on the vector p⃗, they may be represented
according to [10],

Ai(p⃗) = piA(p), (22)

Bij(p⃗) = (δij −
pipj
p2
)B⊥(p) +

pipj
p2

B∥(p). (23)

Thus we can replace piAi in Eq. (21) with

piAi = p2A(p). (24)

6⟪pi − p′i⟫ = 1
2E ∫

d3q
(2π)32Eq

∫ d3q′

(2π)32Eq′
∫ d3p′

(2π)32E′ ×
1
g ∑∣M∣

2(2π)4δ4(p + q − p′ − q′)(pi −
p′i)f ′(q⃗)(1+ f ′(q⃗′)), where g is the spin and color degeneracy of the high-energy particles,
M is the matrix element of a two-body collision and the terms of the sum range over the
initial and final spin and color states.
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So finally,

−dE
dx
= p2A +B00 −Bii

p
. (25)

We consider now the drag and diffusion coefficients due to collisional
processes for heavy quarks interacting with the QGP at temperature T = 0.35
GeV calculated following [10].

2 4 6 8 10
p, GeV

-0.10

-0.05

0.05

0.10

0.15

0.20

0.25

- dE
dx
, Gev
fm

Charm

Bottom

Figure 5: Energy loss per unit distance traveled as a function of momentum
of the incoming charm quark mc = 1.5 GeV (blue) or bottom quark mb = 4.2
GeV (yellow) for the 2 → 2 processes in the QGP at temperature T = 0.35
GeV.

For T = 0.35 GeV, the energy loss per unit distance traveled for a p = 5
GeV charm quark is approximately 0.14 GeV

fm and 0.08 GeV
fm for a p = 5 GeV

bottom quark. So, quarks that have a larger mass lose less energy.

11



Summary

In this project, numerical estimates of the radiative energy loss of gluons
inside a gluonic plasma are made:

• For αs = 0.3 and Λ ≈ T = 0.3 GeV, the energy loss per collision for a
E = 5 GeV gluon is approximately 1.3 GeV for q⊥ ≫ k⊥ and 0.3 GeV for
k⊥ ≳ q⊥. We have shown that increasing the strong coupling (αs), the
interaction time (Λ−1) or the energy of the incoming high-energy gluon
(E) results in an increase the energy loss per collision;

• For αs = 0.3 and Λ ≈ T = 0.3 GeV, the energy loss per unit distance
traveled for a E = 5 GeV gluon is approximately 0.4 GeV2 for q⊥ ≫ k⊥
and 0.10 GeV2 for k⊥ ≳ q⊥.

In the limit of q⊥ ≫ k⊥, we observe a higher energy loss for gluons. This can
be attributed to the dominance of soft gluons (characterized by small values
of k⊥) in the gluon spectrum.

Energy loss of heavy quarks (charm and bottom) interacting with light
quarks and gluons are performed:

• For T = 0.35 GeV, the energy loss per unit distance traveled for a p = 5
GeV charm quark is approximately 0.14 GeV

fm and 0.08 GeV
fm for a p = 5

GeV bottom quark. So, quarks that have a larger mass lose less energy.

Using the approach and results of the energy loss calculation in this study,
one can probe the properties of the QGP medium, such as its energy density
[12], temperature [13], and viscosity [14]. It also provides evidence for the
existence of the QGP itself, as the observed energy loss and modifications
of the jet properties (known as jet quenching [15]) can be attributed to the
interactions with the QGP medium.
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A Appendix

We present a conclusion on the formation time in QED that is similar to
[5].

Figure 6: One of the Feynman diagrams for gluon radiation from the parton
line induced by double scattering at static centers.

The radiation amplitude associated with double scattering is

RQED
2 = ig [( ε ⋅ pi

k ⋅ pi
− ε ⋅ p
k ⋅ p
) eik⋅x1 + ( ε ⋅ p

k ⋅ p
−
ε ⋅ pf
k ⋅ pf

) eik⋅x2] , (26)

where k = (ω, k⃗) is the 4-momentum of the emitted gluon, ε is the 4-
polarization of the emitted gluon, pi is the initial 4-momentum of the high-
energy parton, pf is the final 4-momentum of the high-energy parton, p is
the 4-momentum of the intermediate parton, x1 = (0, x⃗1) and x2 = (t2, x⃗2)
are the 4-coordinates of two potentials with t2 = z2−z1

vz
= L

vz
, and vz is the

longitudinal velocity of the high-energy parton. We consider the scattering
centers to be distributed along the z-axis.

The interference between two scatterings is determined by the relative
phase factor:

k ⋅ (x2 − x1) = ωt2 − k⃗(x⃗2 − x⃗1) = L(
ω

vz
− kz) (27)

with the formation time τQED = 1
ω
vz
−kz =

1
ω
vz
−
√
ω2−k2⊥

. For vz → 1 and k⊥ ≪ ω,

τQED ≈ 2ω
k2⊥
.
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B Appendix

For dominant small-angle gg → gg scattering [5],

dσel

dq2⊥
= 9πα2

s

2q4⊥
. (28)

σel, the cross section for the gg → gg scattering is then obtained as

σel = ∫
s
4

m2
D

dq2⊥
9πα2

s

2q4⊥
= 9πα2

s

2

s − 4m2
D

sm2
D

(29)

and ⟨q⊥⟩ is

⟨q⊥⟩ =
1

σel
∫

s
4

m2
D

dq2⊥
9πα2

s

2q3⊥
= 9πα2

s

σel

√
s − 2mD√
smD

= 2
√
smD√

s + 2mD

. (30)

Similarly we can get

⟨q2⊥⟩ =
sm2

D

s − 4m2
D

ln( s

4m2
D

). (31)
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C Appendix

Consider the reaction g(k1) + g(k2) → g(k3) + g(k4) + g(k5), where 4-
momentum of gluons in the center-of-momentum frame are defined by

k1 = (E, 0⃗, k1z), (32)

k2 = (E2, 0⃗,−k1z), (33)

k3 = (E3, q⃗⊥, k3z), (34)

k4 = (E4,−q⃗⊥,−k3z), (35)

k5 = (k0, k⃗⊥, kz), (36)

where ∣k⃗5∣ ≪ ∣k⃗3∣, ∣k⃗4∣ in the soft gluon radiation limit. We may also approxi-
mately assume E ≈ E2, E3 ≈ E4 for high-energy regime.

The Mandelstam variable s′ is given by

s′ = (k3 + k4)2 = (E3 +E4)2 ≈ 4E2
3 . (37)

From the other hand it is

s′ = 2(k3 ⋅ k4) = 2(E3E4 + q2⊥ + k2
3z) ≈ 2(E2

3 + q2⊥ + k2
3z). (38)

Note that the Mandelstam variables for the soft gluon emission obey the
constraint equation:

s + t + u + s′ + t′ + u′ = 0. (39)

Thus,

s′ = −s − t − u − t′ − u′ = 2(k1 ⋅ k5) + s − 2(k2 ⋅ k5) =
= 2(Ek0 − k1zk5z) + s − 2(E2k0 + k1zk5z) ≈ s. (40)

So finally,

q2⊥ ≈
s

2
−E2

3 − k2
3z ≈

s

2
− s

4
− k2

3z =
s

4
− k2

3z ⩽
s

4
. (41)
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