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Abstract  

In this practice I have learned how to simulate the current voltage characteristics 

for single Josephson junctions at different dissipation parameters.  And record the 

voltage dynamics at different current values. In this part I used the resistively and 

capacitively shunted Josephson junctions (RCSJ) model to find the voltage across the 

junction. 

 

The second part was devoted to micromagnetic simulations. Here, I studied the 

Landau–Lifshitz–Gilbert equation which describes the magnetic moment dynamics. 

And I got some experience for how to use Ubermag package to calculate magnetic 

hysteresis for thin film magnetic material for different anisotropic constant, and 

exchange interaction.  
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1. Josephson junction simulation: 

1.1. Introduction  

1.1.1.Josephson effect: 

         Brian D. Josephson predicted the Josephson effect in 1962, and it is just as 

significant as flux quantization.[1] 

1.1.2.Short Josephson junction: 

         Superconductivity finds several uses in electronics, sensors, and high-

frequency devices, thanks to the Josephson effect. When two superconductors are 

electrically coupled in a weak way, the Josephson effect is seen. There are 

numerous ways to develop this kind of communication [2].  

Superconductor-insulator-superconductor (SIS) connections were the only ones 

considered in Josephson's original theoretical research. 

The main principle of the short Josephson junction is the overlapping of the wave 

functions (𝜓1 𝑎𝑛𝑑 𝜓2) of the electrons of the 𝑆1 𝑎𝑛𝑑 𝑆2 respectively[3]: 

 

𝜓1 = √𝑛𝑠
∗1 𝑒𝑖𝜃1      (1.1) 

𝜓2 = √𝑛𝑠
∗2 𝑒𝑖𝜃2      (1.2) 

1.1.3.Lumped junctions 

         Lumped junctions are Josephson junctions that have a phase difference and a 

spatially uniform supercurrent density. A supercurrent can be used to characterize 

such junctions:  

𝐼𝑠 = ∫ 𝐽𝑠. 𝑑𝑠

𝑠

     (1.3) 

Where 𝐽𝑠 is the supercurrent density while the junction area S is the integration 

region. It is possible to rewrite the current-phase relation in terms of the currents as: 

𝐼𝑠 = 𝐼𝑐 sin 𝜙(𝑡)      (1.4) 

where 𝐼𝑠 𝑎𝑛𝑑 𝐼𝑐 are the super and critical currents respectively. 

 

Fig. 1 Josephson junction (SIS) [3] 



5 | P a g e  

 

The gauge-invariant phase difference is still given by: 

𝜙(𝑡) = 𝜃2(𝑡) − 𝜃1(𝑡) −
2𝜋

Φ0
∫ 𝐴(𝑟, 𝑡). 𝑑𝑙

2

1

       (1.5) 

Where 𝜙 is the phase difference and the integral term represent the integration of 

the vector potential along (dl) (the distance between the two points which 

𝜃1 𝑎𝑛𝑑 𝜃2) were calculated. 

Because the electric field at a lumped junction is independent of both y and z, it 

should be noted that the voltage is constant across the junction area, which extends 

for example, across the yz-plane. After then, the voltage-phase relation becomes: 

𝑑𝜙

𝑑𝑡
=

2𝜋

Φ0
 𝑉     (1.6) 

1.1.4.London equations: 

         The time derivative and the curvature of the supercurrent density expression 

are used to derive the phenomenological London equations. In its simplified form, 

they are provided with by: 

 
𝜕

𝜕𝑡
(Λ𝐽𝑠) = 𝐸           (1.7)  (1st London equation) 

 

∇ × (Λ𝐽𝑠) = −𝐵      (1.8) (2nd London equation) 

 

(Where, Λ = 𝜇0(𝜆𝐿)2 is London parameter and 𝜆𝐿 is London penetration depth.) 

The gauge invariant phase difference j varies in time as (2nd Josephson equation) in 

the presence of a finite potential difference ∆𝜇 =  𝑒𝑉 between the two 

superconductors. 

𝑑𝜙

𝑑𝑡
=

2𝜋

Φ0
 𝑉 =

2𝑒𝑉

ℏ
      (1.9) 

The Josephson current then oscillates in time as 𝐼𝑠  =  𝐼𝑐  𝑠𝑖𝑛(𝜔𝑡 + 𝜙0)  

at a frequency =
𝜔

2𝜋
. 
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1.2. Modeling: 

         the equivalent circuit for SIS junction is: 

(RCSJ) (Resistively Capacitively Shunted Junction) 

The total current in the circuit is given by: 

𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐼𝑑𝑖𝑠𝑝 + 𝐼𝑞𝑝 + 𝐼𝑠         (1.10) 

 

where, 

𝐼𝑑𝑖𝑠𝑝 = 𝐶
𝑑𝑉

𝑑𝑡
 (displacement current) 

             𝐼𝑞𝑝 =
𝑉

𝑅
 (quasi particle current) 

 

             𝐼𝑠 = 𝐼𝑐 sin 𝜙 (superconductor current) 

 

                                       𝐼𝑡𝑜𝑡𝑎𝑙 = 𝐶
𝑑𝑉

𝑑𝑡
+

𝑉

𝑅
+ 𝐼𝑐 sin 𝜙         (1.11) 

where, C is the capacity of the capacitor, R is the resistance of the resistor 𝐼𝐶  is the 

critical current and from equation (1.9)            𝑉 =
ℏ

2𝑒

𝜕𝜙

𝜕𝑡
                

Normalization of the system equation was done by using the following parameters: 

𝑉0 =
ℏ𝜔𝑝

2𝑒
;                 𝜏 = 𝜔𝑝𝑡;             𝜔𝑝 = √

2𝑒𝐼𝑐

𝐶ℏ
;                 𝛽 =

1

𝑅
√

ℏ

2𝑒𝐼𝑐𝐶
; 

𝐼

𝐼𝑐
→ 𝐼                                

𝑉

𝑉0
→ 𝑉 

where, 𝛽 is the dissipation parameter. 

If we applied an external radiation, a radiation current term ( 𝐼𝑅𝑎𝑑 = 𝐴𝑠𝑖𝑛(𝜔𝑡))  

is added. Where A is the amplitude and 𝜔 is the angular frequency. 

{

𝜕𝜙

𝜕𝑡
= 𝑉

𝑑𝑉

𝑑𝑡
= 𝐼 − sin 𝜙 − 𝛽

𝜕𝜙

𝜕𝑡

 

 
(RCSJ) (resistive-capacitive 

shunted junction) 
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This system is solved by fourth order Runge–Kutta method by using a C++ code 

provided by the supervisor. 

1.3. Results: 

1.3.1.The I-V characteristic curves and the effect of 𝜷.  

• For (𝜷 < 𝟏) (underdamped case): 

    As the current increases the voltage jumps to a higher value when the current 

reaches the critical value. And hysteresis appears while the current is decreasing 

from the maximum value due to the capacitance of the junction as shown in the 

(fig.1(a)). We also noticed that as 𝛽 increases the resistance decreases. 

• For 𝜷 > 𝟏 (overdamped case): 

     Hysteresis disappeared due to neglecting the effect of the junction capacitance.  

So, by increasing and decreasing current, the IV-curve for both current directions 

will be the same as shown in the (Fig.1(b)).  

 

 

 

 

 

 

 

 

 

 

1.3.2.Time dependence characteristic curve and effect of 𝜷: 
           In this section, we investigate voltage time dependance at different bias current, and 

dissipation parameter. 

• For (𝜷 < 𝟏) underdamped case 

    The time dependence for voltage showed that while the current is less than 

critical current, the voltage zero (see Fig.2(a)) for I =0.5 and 0.7). When the current 

exceeds the critical value (𝐼 ≥ 𝐼𝑐) the voltage appears (see Fig.2(a) for I = 1.5).  For 

Fig.1(a): the effect of 𝛽 on 

I_V characteristic curve at 

the underdamped case 
Fig.1 (b): the effect of 𝛽 on 

I_V characteristic curve at 

the overdamped case 
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(𝐼 < 𝐼𝑐) the time dependance for voltage at I = 0.5 and 0.7 does not equal zero due 

to appearance of the hysteresis region.   

• For (𝜷 > 𝟏) Overdamped case: 

    In this case as we have seen in I-V characteristic curve, the voltage takes the 

same path while the current is increasing or decreasing as s shown in (Fig.2 (b)), the 

voltage has a value only at (𝐼 ≥ 𝐼𝑐). 

 

 

 

 

 

 

 

 

 

• Effect of external radiation 

    In this section we have studied the effect of radiation on the voltage behavior. If 

we apply an external ac current or voltage source, a constant voltage step appears in 

the IV- characteristics due the phase of the junction locks to the drive frequency and 

this is known as Shapiro steps which appear at quantized values of voltage, their 

width has a Bessel function dependence on the amplitude 𝑉1 of the ac voltage. 

 

• Overdamped case: 

    Shapiro steps appears at values of voltage equals to: 
𝑉𝑛 = 𝑛 𝜔 

where 𝜔 is the angular frequency the applied radiation. Where 𝑛 = 1,2,3, … … as 

shown in (Fig 3 (a)) and (Fig.3 (b)). 

Fig.2(b) Voltage Time dependence curve 

at the Overdamped case  
Fig.2(a) Voltage Time dependence curve at 

the under damped case  
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The width of the DC intervals is proportional to the amplitude of the current spike 

according to the following equation: 

∆𝐼 = 𝐼𝑐  𝐽𝑛 (
2𝜋𝑉1

Φ0𝜔
) 

• Underdamped case: 

     In this case Shapiro steps appear at fractional values of voltage as shown in 

(Fig.3(C)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.3(a) Shapiro step at 

overdamped case at          

𝑉𝑛 =  1 𝜔 

Fig.3(b) Shapiro step at 

overdamped case at          

𝑉𝑛 = 2𝜔 

Fig.3(C) Shapiro steps at 

underdamped case  
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2. Micromagnetic simulation: 

        In this part, we investigate the magnetic hysteresis for ferromagnetic material at different 

magnetic energy parameters. 

2.1. Dynamics equation: 

         The dynamics of magnetization field m, without external excitations (e.g. 

spin-polarized current) is governed by the Landau-Lifshitz-Gilbert (LLG) equation 

[4,5]. 

𝑑𝑚

𝑑𝑡
= −𝛾0(𝑚 × 𝐻𝑟𝑓𝑓) + 𝛼 (𝑚 ×

𝑑𝑚

𝑑𝑡
) 

 

where 𝛾0 = 𝜇0𝛾 is the gyromagnetic ratio,  𝛼 is the Gilbert damping, and 

𝐻𝑒𝑓𝑓 = −
1

𝜇0𝑀𝑠

𝛿𝑤(𝑚)

𝛿𝑚
 is the effective field. It consists of two terms: precession 

and damping. In this tutorial, we will explore some basic properties of this 

equation to understand how to define it in simulations. 

2.2. Energy equation: 

          Any magnetic system is exposed to a group of energies that are produced by the 

interaction if the magnetic moment of the electrons with each other and with the external 

applied magnetic field. And these energies are. 

2.2.1.Zeeman energy: 

          This is energy due to the external applied magnetic field.  

𝐸𝑧 = −𝜇0𝑀𝑠𝑚. 𝐻 

where, 𝜇0 & 𝑀𝑠 are the magnetic permeability and saturation magnetization respectively. 

2.2.2.Exchange energy: 

          The energy due to the interaction between the neighboring electrons  

𝐸𝑒𝑥 = 𝐴𝑒𝑥(∇𝑚)2 

where 𝐴𝑒𝑥 is the exchange energy parameter. 

2.2.3.Uniaxial anisotropy energy: 

          This energy term explained that each part of the system can have individual energy.  

𝐸𝑎 = −𝐾(𝑚. 𝑢) where, u is the easy axis direction. 

where, K is the uniaxial anisotropy energy parameter.  
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2.2.4.Dzyaloshinskii-Moriya energy: 

          While the exchange interaction aims to align (neighboring) magnetic moments parallel to 

each other, the Dzyaloshinskii-Moriya (DM) energy wants to align them perpendicular to each 

other. 

𝐸𝑑𝑚 = 𝐷[𝑚𝑧∇. 𝑚 − (𝑚. ∇)𝑚𝑧] 

where, D is the Dzyaloshinskii-Moriya energy parameter. 

So, the total energy equation becomes: 

𝐸𝑠𝑦𝑠𝑡𝑒𝑚 = ∫(−𝜇0𝑀𝑠𝑚. 𝐻) + (𝐴(∇𝑚)2) + (−𝐾(𝑚. 𝑢) + (𝐷[𝑚𝑧∇. 𝑚 − (𝑚. ∇)𝑚𝑧])) 𝑑𝑉 

2.3. Ubermag simulation: 

         The simulation is done by Ubermag simulator using (oommfc) as a magnetic 

calculator.  

The simulation is done on a cell with dimensions (50nm,50nm,50nm) and the mesh 

was (5nm,5nm,5nm). And the applied magnetic field was 8 × 106𝐴/𝑚 in Z 

direction, and the (y-component) of the magnetization was studied giving us the 

following results. 

 

2.4. Results  

         When the external applied magnetic field is removed, the magnetic moment 

doesn’t return to the initial state and the hysteresis area appeared.  

Fig (4) (a) the effect of DM 

parameter on the hysteresis area  
Fig (4) (b) the effect of exchange 

energy parameter on the hysteresis 

area  

Fig (4) (c) the effect of uniaxial 

anisotropy energy parameter on 

the hysteresis area  
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By studying the magnetization at different values of the energy parameters, we 

found that, as (DM) increases the hysteresis area decreases and when (𝐴𝑒𝑥 and K) 

increase the hysteresis area increases. 

 

3. Conclusion  

      In this practice I have studied the behavior of the current and the voltage of short 

Josephson junction. And I have seen the effect of the dissipation parameter 𝛽. When 

𝛽 > 1 (overdamping case) as the current increases, the voltage is zero for current 

below the critical current. If the current exceeds the critical current, the voltage 

appears across the junction. By increasing 𝛽 the resistance of the junction decreases. 

While as 𝛽 < 1 (underdamping case) in which as the current increases, the voltage is 

zero when the current is below the critical current. When the current exceeds the 

critical current, the voltage appears but, in this case when the current decreasing the 

hysteresis appears because of the junction capacitance and the voltage appears at the 

hysteresis area. Also, we have studied the effect of the applied external radiation with 

angular frequency (𝜔) on the junction which leads to appearance of Shapiro steps 

due to that the junction locks to the drive frequency and this is known as Shapiro step 

which appears at quantized values of voltage. 

Then, we studied the micromagnetic system and the effect of the energy parameters 

(𝐴𝑒𝑥  , 𝐷 𝑎𝑛𝑑 𝐾) on magnetization hysteresis we found that, as D increases the 

hysteresis area decreases and when (𝐴𝑒𝑥 and K) increase the hysteresis area increases. 
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