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ABSTRACT

This internship report delves into the extensive literature surrounding the application of various adsorbents in the wastewater treatment process for the separation of rare earth elements (REEs) in both single and multi-component systems. Confronted by the inherent challenge of similar chemical properties among REEs, the study critically evaluates recent research advancements, emphasizing evolving separation technologies and a nuanced assessment of performance metrics. Employing a systematic literature review methodology, the report spans studies published over the last decade. Central to this exploration is the categorization of adsorbents, ranging from traditional ion-exchange resins to cutting-edge hybrid materials and activated carbon. Rigorous scrutiny of their respective efficiency and selectivity in the intricate process of REE separation provides a nuanced understanding of the landscape. The abstract concludes with insights into key trends, challenges, and opportunities, offering a valuable resource for researchers and industry professionals engaged in the critical domain of rare earth element separation. This exploration not only contributes to academic discourse but also establishes a foundation for informed decision-making and innovative advancements in the realm of REE separation. In future, this exploration of adsorbent technologies not only contributes to the academic discourse but also lays the foundation for informed decision-making and innovative advancements in the realm of REE separation.
Key words: Rare Earth Elements (REEs), Adsorbents, Separation, Selectivity





1. Introduction:
The extraction and separation of rare earth elements (REEs) constitute a pivotal challenge in the realms of materials science, chemistry, and industrial applications. REEs, comprising 15 lanthanides, scandium, and yttrium, are critical components in various advanced technologies, including electronics, green energy, and defense systems. Despite their ubiquitous presence in the Earth's crust, the inherent difficulty in isolating these elements arises from their strikingly similar chemical properties, necessitating sophisticated separation techniques.
1.1 Main Problem:
The main problem addressed in this literature review stems from the imperative need to devise effective and environmentally sustainable methods for separating REEs. With increasing global demand for REEs in applications ranging from consumer electronics to renewable energy technologies, ensuring a stable and efficient supply has become a critical concern. The challenge lies not only in overcoming the chemical similarities between different rare earth elements but also in developing separation processes that are economically viable and environmentally responsible.
1.2 Background:
Historically, the separation of REEs has been dominated by solvent extraction processes, ion exchange, and precipitation methods. However, these traditional approaches often suffer from drawbacks such as high operational costs, environmental impact, and low selectivity. Recent advancements in materials science and nanotechnology have paved the way for exploring innovative adsorption-based methods using various adsorbents.
1.3 Findings:
Current research findings highlight a diverse array of adsorbents showing promise in the separation of REEs. These materials range from traditional ion-exchange resins and activated carbon to more novel hybrid materials engineered for enhanced selectivity and efficiency. The pursuit of sustainable separation technologies is gaining momentum, reflecting the broader shift toward environmentally conscious practices in resource extraction and processing.
This literature review endeavors to synthesize and critically evaluate the existing knowledge on adsorbents for REE separation. By delving into the mechanisms, performance metrics, and advancements in separation technologies, this exploration aims to contribute to the understanding of the current state of REE separation methodologies. Furthermore, it sets the stage for identifying gaps in the current research landscape and proposing avenues for future investigations, emphasizing the crucial intersection of scientific innovation, economic feasibility, and environmental responsibility in the pursuit of sustainable rare earth element separation.
2. Project Goals:
The overarching goals of this internship project are strategically crafted to address the intricacies and challenges inherent in the separation of rare earth elements (REEs). Each goal is meticulously designed to contribute to the broader understanding of REE separation methodologies, with a focus on adsorbents in both single and multi-component systems.
2.1 Critical Analysis and Compilation:
The primary goal of this project is to undertake a comprehensive and critical analysis of existing research literature. This involves delving into a multitude of studies, including journal articles, conference papers, and research reviews published within the last decade. By assimilating this vast body of knowledge, the aim is to compile an exhaustive and up-to-date repository of information on various adsorbents employed in the separation of REEs. The critical analysis extends beyond mere aggregation, emphasizing the discerning evaluation of the methodologies, findings, and limitations of each study.
2.2 Identification of Research Gaps:
An intrinsic aspect of this internship project is to discern and identify gaps in the current research landscape pertaining to REE separation. By critically evaluating existing literature, the goal is to pinpoint areas where knowledge is either limited or lacking. This identification of research gaps is instrumental in directing future investigations, guiding researchers and industry professionals toward unexplored avenues that hold potential for groundbreaking advancements.
2.3 Insights into Strengths and Limitations:
Understanding the strengths and limitations of different adsorbents used in REE separation is a pivotal goal. This involves a nuanced analysis of the performance metrics of various adsorbents, including their efficiency, selectivity, and scalability. By gaining insights into the comparative advantages and disadvantages of different materials, the project aims to provide a well-rounded perspective for researchers and industry practitioners, enabling them to make informed decisions in the selection and optimization of separation methodologies.
2.4 Emphasis on Single and Multi-Component Systems:
A distinctive feature of this project is its explicit focus on both single and multi-component systems. While the similarities in chemical properties pose challenges in single-component systems, the complexity escalates in multi-component environments. The goal is to comprehensively address the intricacies of REE separation across these different scenarios, providing a holistic understanding of the challenges and advancements in each context.
3. Scope of Work:
The scope of this internship project is designed to be expansive and encompassing, aiming to provide a comprehensive overview of the landscape surrounding the separation of rare earth elements (REEs). The delineation of the scope is pivotal for guiding the methodology and ensuring the project's relevance and impact.
3.1 Temporal Scope:
The temporal scope of this project is defined to encapsulate recent developments in the field. The focus is on literature published within the last decade, ensuring the inclusion of contemporary studies that reflect the latest advancements in adsorbent technologies for REE separation. By confining the temporal scope, the project aims to capture the dynamic nature of research in this rapidly evolving field.
3.2 Material Scope:
Encompassing a broad range of materials, the scope includes traditional adsorbents such as ion-exchange resins and activated carbon, as well as emerging hybrid materials engineered for enhanced performance. This inclusivity allows for a nuanced exploration of the diverse array of adsorbents employed in REE separation. The project is structured to accommodate the chemical and structural intricacies of different adsorbents, ensuring a comprehensive understanding of their roles in the separation process.
3.3 Focus on Mechanisms and Performance Metrics:
The scope extends to the exploration of mechanisms employed by various adsorbents in capturing and separating rare earth elements. Understanding these mechanisms is crucial for deciphering the selectivity and efficiency of different materials. Additionally, the project emphasizes the quantitative assessment of performance metrics, including but not limited to separation efficiency, selectivity, and capacity. This focus ensures a robust evaluation of the practical utility of adsorbents in real-world scenarios.
3.4 Single and Multi-Component Systems:
Recognizing the multifaceted challenges in REE separation, the project's scope explicitly includes both single and multi-component systems. The intricacies of single-component systems, where the chemical similarities between REEs pose challenges, are juxtaposed against the heightened complexity of multi-component systems. By addressing both scenarios, the project aims to provide insights into the adaptability and limitations of adsorbents across diverse operational contexts.
3.5 Holistic Overview:
The project's scope extends beyond a mere compilation of information, aiming to provide a holistic overview of the challenges and advancements in the field. By incorporating the temporal, material, and operational dimensions, the project seeks to create a comprehensive narrative that not only informs but also guides future research endeavors in the realm of REE separation.
4. Methods:
The methodology employed in this internship project is designed to rigorously and systematically explore the diverse landscape of adsorbents used for the separation of rare earth elements (REEs). The chosen methods are intended to ensure the comprehensive collection, analysis, and synthesis of information from a multitude of sources.
4.1 Systematic Literature Review:
The cornerstone of the methodology is the implementation of a systematic literature review. This approach involves a meticulous and structured search across reputable databases, encompassing academic journals, conference proceedings, and research reviews. The search strategy incorporates relevant keywords such as "rare earth elements," "adsorbents," and "separation," ensuring a broad yet targeted selection of literature. The systematic nature of the review minimizes bias, enhances reproducibility, and facilitates the identification of key studies within the defined temporal scope.
4.2 Inclusion Criteria:
The application of stringent inclusion criteria is a pivotal aspect of the methodology. Articles considered for inclusion must specifically address the use of adsorbents in the separation of REEs. Both single and multi-component systems are included to ensure a holistic representation of the field. Additionally, the selected literature must have been published within the last decade to capture the latest advancements and trends. The inclusion criteria serve as a filter, ensuring that the chosen studies align with the project's objectives and contribute meaningfully to the synthesis of information.
4.3 Comparative Analysis:
A critical component of the methodology is the adoption of a comparative analysis approach. Selected studies are scrutinized for the adsorbents utilized, the mechanisms involved, and the reported performance metrics. This comparative lens allows for the identification of trends, strengths, and limitations associated with different adsorbents. By systematically comparing the methodologies and outcomes of diverse studies, the project aims to distill key insights that contribute to a nuanced understanding of the state-of-the-art in REE separation.
4.4 Data Visualization:
To enhance clarity and facilitate a deeper understanding of the findings, the methodology incorporates data visualization techniques. Figures, diagrams, and plots are employed to illustrate chemical structures of prominent adsorbents, graphically represent separation efficiency and selectivity, and depict adsorption mechanisms. These visual aids not only serve as powerful tools for conveying complex information but also contribute to the synthesis of results in a more accessible format.
4.5 Iterative Process:
The methodology is designed as an iterative process, allowing for continual refinement and adjustment based on emerging insights. As new information is synthesized, the methodology enables a dynamic approach to explore additional dimensions, revisit specific areas, or delve deeper into particular aspects that emerge as crucial during the course of the review.
5. Figures/Diagrams/Plots:
The incorporation of tables detailing the parameters of various adsorbents used for the separation of rare earth elements (REEs) is instrumental in providing a structured and comparative overview. These tables serve as a quantitative foundation, allowing for the systematic analysis of different adsorbents across key parameters. The tables are seamlessly integrated into the broader literature review, providing a quantitative complement to the qualitative analysis. They act as reference points for discussions on the merits and challenges associated with different adsorbents. Visualizing the data in tabular form enhances the reader's understanding and facilitates a more nuanced interpretation of the findings.
The following table shows the list of parameters for various adsorbents used in the separation of various REEs. The tables serve as a quantitative cornerstone in the exploration of adsorbents for REE separation. Their systematic structure enables a comparative analysis that is integral to the synthesis of information, offering a clear and organized representation of the diverse parameters influencing the performance of different adsorbents in the complex process of rare earth element separation.




	Element
	Adsorbent
	Type of system 
	Composition
	pH
	Time (min)
	Temp (oC)
	Reference

	Cerium (Ce)
	4-tert-Octyl-4-((phenyl)diazenyl)phenol (TPDP)
	single 
	
	3.5
	25
	25
	[1]

	
	bio-inspired urchin-like structured hydroxyapatite (UHdA)
	multi
	La3+, Ce3+, Sm3+, Ce3+
	6
	
	45
	[2]

	
	(UHdA@Fe3O4)
	
	
	
	
	
	

	
	hydrous ferric oxide
	single 
	
	6.8
	75
	30
	[3]

	
	rice husk (RH)
	single 
	
	
	25
	25
	[4]

	
	1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone(HPMBP) 
	single 
	
	4
	1200
	25
	[5]

	
	Crab shell
	multi
	Ce3+, Eu3+
	6
	60
	25
	[6]

	
	
	
	
	
	
	
	

	
	Activated Charcoal
	single 
	
	
	
	20
	[7]

	
	Transcarpathian clinoptilolite  
	single 
	
	6
	
	25
	[8]

	
	synthetic resin purolite C100
	single 
	
	solution pH
	1440
	25
	[9]

	
	Hydrated MnO2
	single 
	
	5
	7
	30
	[10]

	Lanthanum(La)
	Purolite 
S950
	single 
	
	5
	60
	60
	[11]

	
	Sargassum polycystum
	single 
	
	5
	
	25
	[12]

	
	Crab shell
	single 
	
	5
	25
	30
	[13]

	
	Neem sawdust
	single 
	
	6
	240
	50
	[14]

	
	Tangerine peel
	single 
	
	5
	60
	25
	[15]

	
	Stichococcus bacillaris
	single 
	
	6
	10
	25
	[16]

	
	AC from RH
	single 
	
	3.5
	60
	25
	[17]

	
	GO nanosheets
	
	
	6
	15
	25
	[18]

	
	MgFe-LDH-Cyanex272
	multi
	La3+, Nd3+
	1
	120
	25
	[19]

	
	
	
	
	
	
	
	

	
	CL-Zn/Al LDH nanocomposite
	multi
	La 3+, Ce 3+, Y 3+
	7
	10
	47
	[20]

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	Praseodymium (Pr)
	free-S. wighti
	single 
	
	5
	90
	32
	[21]

	
	free-T. conoides
	
	
	
	240
	
	

	
	polysulfone immobilized S. wightii
	
	
	
	
	
	

	
	polysulfone immobilized T. conoides
	
	
	
	
	
	

	
	crab shell
	single 
	
	5
	35
	50
	[22]

	
	orange peel
	
	
	
	50
	
	

	
	macroporous strong acid ion exchange resin (D72)
	single 
	
	3
	900
	25
	[23]

	
	Terminalia arjuna
	single 
	
	6.63
	480
	28
	[24]

	
	magnetite nanoparticles functionalized with phosphonic acid group (PA-MNPs)
	single 
	
	4
	5
	25
	[25]

	
	polysulfone immobilized Turbinaria conoides
	multi
	Pr 3+, Tm 3+
	5
	1812
	32
	[26]

	
	
	
	
	
	1938
	
	

	
	polyethylenimine methylene sodium phosphonate grafted Merrifield resin (PEIPR-Na)
	multi
	Pr 3+, U 3+, La 3+
	4.2
	250
	35
	[27]

	
	
	
	
	2.9-5.7
	
	22
	

	
	
	
	
	>4.3
	30
	27
	

	
	hydrogenated Dowex 50WX8 resin
	multi
	Pr 3+ , Dy 3+, Y 3+
	1
	15
	25
	[28]

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	

	
	2-ethylhexylphosphonicacid-mono-2-ethylhexylester (PC88A)
	multi
	Pr 3+, Nd 3+
	2.5
	420
	23
	[29]

	
	Laminaria digitata algal beads and foams
	single 
	
	4
	300-360
	25
	[30]

	Neodymium (Nd)
	Expanded vermiculite
	single 
	
	3
	180
	10
	[31]

	
	(trimethoxy-silyl)propyl diethylphosphonate (DEPPS)
	single 
	
	6
	1440
	25
	[32]

	
	magnetic iron oxide (Fe3O4)
	single 
	
	8.22
	120
	35
	[33]

	
	2-ethylhexyl phosphonic acid mono-2-ethylhexyl ester(P507) 
	single 
	
	4
	1200
	25
	[34]

	
	Gel-type acrylic resin (110 resin)
	single 
	
	6
	4320
	25
	[35]

	
	amino phosphonic groups based on chitosan nano magnetite particles
	single 
	
	4
	15
	21
	[36]

	
	diethylenetriamine-pentaacetic acid (DTPA) functionalizedmagnetic nanosorbents
	single 
	
	4
	30
	21
	[37]

	
	chitosan and iron(III) hydroxide (ChiFer(III)) composite
	single 
	
	4
	4320
	25
	[38]

	
	phosphoryl-functionalized algal-PEI beads
	single 
	
	3.0-4.0
	30-40
	21
	[39]

	
	Chitosan-Manganese-Ferrite Magnetic Beads
	single 
	
	4
	50
	25
	[40]

	Samarium (Sm)
	PAN@SDS
	single 
	
	4.8
	30
	25
	[41]

	
	Activated Charcoal
	single 
	
	4
	30
	60
	[42]

	
	DEHPA and TOPO extract
	single 
	
	
	30
	25
	[43]

	
	Bentonite-N-(2- hydroxyethyl) ethylenediamine
	single 
	
	4
	2
	20
	[44]

	
	Microspheres of Haematite
	single 
	
	7
	60
	25
	[45]

	
	GO/CS/ZrP/Si nano composite
	single 
	
	4.5
	240
	65
	[46]

	
	Multiwalled carbon nanotubes
	single 
	
	5
	120
	30
	[47]

	
	Sargassum biomass
	single 
	
	5
	60
	20
	[48]

	
	1-acryloyl-3-phenyl thiourea Hydrogels
	single 
	
	7
	720
	
	[49]

	
	SBA-15-ZMVP
	single 
	
	5
	60
	55
	[50]

	Europium (Eu)
	multiwalled carbon nanotubes (MWCNTs)
	single 
	
	6
	60
	25
	[51]

	
	5-tert-butyl-2-hydroxybenzaldehyde 
thiosemicarbazone (THTB)
	single 
	
	5
	180
	25
	[52]

	
	zeolite
	single 
	
	8
	1200
	30
	[53]

	
	Sargassum
	multi
	Eu 3+, La 3+, and Yb3+
	2
	60
	25
	[54]

	
	Saccharomyces cerevisiae immobilized in glutaraldehyde cross-linked chitosan
	single 
	
	5
	40
	25
	[55]

	
	Fe3+- and Al3+-doped zirconium- and titanium-phosphates
	single 
	
	3
	2880
	25
	[56]

	
	Magnetite Nanoparticles
	multi
	Eu 3+, La 3+
	7
	240
	25
	[57]

	
	manganese oxide nanoparticles (Mn3O4 NPs)
	multi
	Eu 3+, Gd 3+
	5
	300
	25
	[58]

	
	H‐APC activated carbon
	single 
	
	5
	120
	20
	[59]

	
	Cu-BTC
	single
	
	7
	180
	25
	[60]

	
	Ca-BTC
	
	
	
	
	
	

	
	Al- BTC
	
	
	
	
	
	

	Gadolinium (Gd)
	chelating resin
	single
	
	5.5
	
	35
	[61]

	
	copolymer of styrene and divinylbenzene resin (TVEX-PHOR)
	multi
	Gd 3+, Tb 3+
	5.22
	120
	25
	[62]

	
	Transcarpathian clinoptilolite
	multi
	Gd 3+, Nd 3+
	9.5
	
	20
	[63]

	
	Cyphos@silica
	multi
	Gd 3+, Nd 3+
	3.5
	200
	25
	[64]

	
	Dowex HCR-S/S resin
	single
	
	4
	40
	25
	[65]

	
	Zirconium silico antimonate (ZrSiSb)
	multi
	Gd 3+, Ce 3+
	4.12
	30
	30
	[66]

	
	montmorillonite-supported zero-valent iron nanoparticles (nZVI-M)
	single
	
	4.7-5
	240
	30
	[67]

	
	three-dimensionally interconnected macroporous imprinted chitosan films (3DIM-IFs)
	single
	
	7
	180
	25
	[68]

	
	acid-modified Transcarpathian clinoptilolite
	single
	
	9.5
	1440
	21
	[69]

	
	graphitic carbon nitride (g-C3N4)
	
	
	6
	40
	25
	[70]

	Terbium (Tb)
	Transcarpathian clinoptilolite
	single
	
	8.25
	1440
	20
	[71]

	
	cellulosic material extracted from rose stems (CRS)
	single
	
	6.5
	60
	25
	[72]

	
	raw poplar biomass
	single
	
	4
	60
	25
	[73]

	
	poly(pyrimidine-thiophene-amide (PPTA)
	multi
	Dy 3+, Tb 3+, Nd 3+
	5.5
	130
	25
	[74]

	
	Na-modified Transcarpathian clinoptilolite
	single
	
	8.8-9.0
	150
	25
	[75]

	
	f algal/PEI beads (ALPEI)
	multi
	Tb 3+, La 3+
	5
	30
	21
	[76]

	
	PAN/UiO-66-(COOH)2 NFMs
	multi
	Tb 3+, Eu 3+
	6
	360
	25
	[77]

	
	brown algal biomass (alginate) and polyethylenimine (PEI) beads
	single 
	
	4
	2880
	25
	[78]

	
	core@shell nanoparticles (NPs)
	single 
	
	6
	120
	25
	[79]

	
	inorganic silicon vanadate (SiV)
	multi
	Tb 3+, Eu 3+
	5.5
	200
	25
	[80]

	Dysprosium (Dy)
	expanded vermiculite
	single
	
	5
	180
	25
	[81]

	
	Phosphorus functionalized nanoporous carbon
	multi
	Dy 3+, Nd33+
	
	60
	25
	[82]

	
	Dy3+ ion-imprinted membrane material (II-MAC) 
	single
	
	7
	80
	25
	[83]

	
	ion imprinted mesoporous silica materials (IMS)
	single
	
	2
	150
	25
	[84]

	
	amorphous zirconium phosphate (am-ZrP)
	single
	
	2.5
	900
	25
	[85]

	
	polyethylenimine-epoxysilane-silica
	single
	
	2.4
	1440
	25
	[86]

	
	dysprosium ion imprinted polymer (IIP) particles
	single
	
	7.2
	10
	30
	[87]

	
	aluminum-iron-magnesium silicate
	single
	
	3.5
	180
	25
	[88]

	
	HDTMA-Br- and NaOH-treated bark powder of Mangifera indica
	single
	
	
	420
	30
	[89]

	
	mesoporous silicas functionalized with phosphonic groups ≡ Si(CH2)2P(O)(OH)2
	single
	
	4.8
	60
	20
	[90]

	Holmium (Ho)
	algal biomass/polyethyleneimine beads, ALPEI
	multi
	Ho 3+, Ce 3+, Sc 3+
	4
	40
	22
	[91]

	
	bark powder of Mangifera indica
	single
	
	2.5
	300
	28
	[92]

	
	TVEX–PHOR resin
	multi
	Ho 3+, Pr 3+
	3.5
	30
	25
	[93]

	Erbium (Er)
	D113-III resin
	single
	
	6.04
	1320
	25
	[94]

	
	nitrilotris(methylene)phosphonic acid (NTMP) 
	single
	
	5.7
	240
	60
	[95]

	
	iron oxide (Fe3O4), persimmon tannin (PT), and graphene oxide (GO) as Fe3O4/PT/GO
	single
	
	4
	300
	30
	[96]

	
	chitosan (GLA-Chit) functionalized by poly(aminocarboxymethylation) (PCM-Chit)
	single
	
	5
	300
	40
	[97]

	
	embossed bacterial cellulose aerogel (BCP-I) 
	single
	
	5
	300
	40
	[98]

	Thulium (Tm)
	3–(((5–ethoxybenzenethiol)imino)methyl)–salicylic acid (EBMS)
	single
	
	3.5
	40
	25
	[99]

	Ytterbium (Yb)
	gel-type weak acid resin (110)
	single
	
	5.5
	1500
	25
	[100]

	
	SQD−85 resin
	single
	
	5.5
	600
	35
	[101]

	
	Pseudomonas aeruginosa
	multi
	Yb 3+, La 3+
	5
	24
	22
	[102]

	
	sericin/alginate particles crosslinked with poly(vinyl alcohol) (SAPVA)
	single
	
	5
	120
	25
	[103]

	Lutetium (Lu)
	composite hybrid material (CMHs)
	single
	
	4
	45
	25
	[104]

	
	Transcarpathian clinoptilolite
	single
	
	10
	150
	21
	[105]

	Scandium (Sc)
	aminocarbonylmethylglycine
	single
	
	3
	480
	25
	[106]

	
	mesoporous silica
	single
	
	3
	
	25
	[107]

	
	macro porous TRPO/SiO2-P adsorbent
	single
	
	2
	120
	25
	[108]

	
	resin containing glycol amic acid
	single
	
	1
	1440
	25
	[109]

	Yttrium (Y)
	titanium dioxide with surface 
arsenate groups (4As–TiO2)
	single
	
	9
	40
	20
	[111]

	
	magnesium oxide–calcium alginate hydrogel
	single
	
	2
	90
	40
	[112]

	
	Purolite C100Na Resin
	single
	
	1.5
	1440
	30
	[113]

	
	cobalt iron oxide alginate nanocomposite
	single
	
	4.7
	180
	25
	[114]






	Element
	sorption capacity (mg/g)
	order of model
	model
	elluent
	Reference

	Cerium (Ce)
	192.31
	
	Langmuir
	0.2 M HNO3
	[1]

	
	248.39
	pseudo-second order
	Weber-Morris model
	0.1M HNO3
	[2]

	
	230.01
	
	
	
	

	
	1.4
	
	Freundlich and D–R 
	double distilled water
	[3]

	
	0.101
	pseudo-second order
	Langmuir
	0.2 M HNO3
	[4]

	
	106.38
	
	Langmuir
	
	[5]

	
	144.9
	pseudo-first order
	Sheindorf–Rebhun–Sheintuch equation
	
	[6]

	
	49.5
	
	
	
	

	
	
	pseudo-second order  
	
	
	[7]

	
	
	
	Langmuir
	
	[8]

	
	16.71
	
	Langmuir
	
	[9]

	
	1.75
	
	Freundlich
	0.01 HCl
	[10]

	Lanthanum(La)
	38.52
	pseudo-second order
	Langmuir
	
	[11]

	
	69.4
	
	Langmuir
	
	[12]

	
	140.1
	pseudo-second order
	Langmuir
	
	[13]

	
	160.2
	pseudo-second order
	Freundlich
	0.1 HCl
	[14]

	
	154.86
	pseudo-second order
	Langmuir
	
	[15]

	
	51.02
	pseudo-second order
	Langmuir
	0.1 M HNO3
	[16]

	
	175.4
	pseudo-second order
	Langmuir
	0.1 M HNO3
	[17]

	
	85.67
	pseudo-second order
	Langmuir
	0.1 M HNO3
	[18]

	
	480.8
	
	Langmuir
	0.01 HCl
	[19]

	
	192.3
	
	
	
	

	
	92.51
	pseudo-second order
	Langmuir
	0.1 M HCl
	[20]

	
	96.25
	
	
	
	

	
	102.25
	
	
	
	

	Praseodymium (Pr)
	131.4
	pseudo-first order
	Sips
	
	[21]

	
	146.4
	pseudo-first order
	Sips
	
	

	
	111.2
	pseudo-first order
	Sips
	
	

	
	119.5
	pseudo-first order
	Sips
	
	

	
	57.8
	pseudo-second order
	Langmuir
	0.1 M NaOH
	[22]

	
	49.9
	
	
	
	

	
	294
	pseudo-second order
	Langmuir
	1 M HCl-0.5 M NaCl
	[23]

	
	1.225
	pseudo-second order
	Langmuir
	0.1 M HCl
	[24]

	
	20-24
	pseudo-second order
	Langmuir and Freundlich
	0.1 M H2SO4
	[25]

	
	1.14
	
	Sheindrof–Rebhun–Sheintuch
	0.01 HCl
	[26]

	
	1.23
	
	
	
	

	
	6
	pseudo-second order
	
	5M HCl
	[27]

	
	19
	
	
	
	

	
	1
	
	
	5M H2SO4
	

	
	30
	
	Langmuir
	1M citric acid
	[28]

	
	50
	
	Toth
	1M HNO3
	

	
	60
	
	Langmuir
	1M Ammonium carbonate
	

	
	671.4mg/cm2
	pseudo-second order
	Langmuir
	4.5 M H2SO4
	[29]

	
	110-120
	pseudo-second order
	Sips
	2 M HCl/0.05 M CaCl2
	[30]

	Neodymium (Nd)
	69.236
	pseudo-first order
	Langmuir
	0.3 M CaCl2
	[31]

	
	160
	
	chemical reaction and film pore
	1M HNO3
	[32]

	
	24.88
	pseudo-second order
	Langmuir
	0.05 M HNO3
	[33]

	
	35.18
	pseudo-second order
	Langmuir
	1M HCl
	[34]

	
	308
	pseudo-first order
	Langmuir
	3M HCl
	[35]

	
	125.63
	pseudo-first order
	Langmuir and Sips
	0.2 M HCl
	[36]

	
	11.5
	pseudo-second order
	
	
	[37]

	
	30.9
	pseudo-second order
	Langmuir
	dil HCl
	[38]

	
	210.59
	pseudo-first order
	Langmuir
	0.2 M HCl/0.5 M CaCl2 solution
	[39]

	
	44.29
	pseudo-second order
	Langmuir
	MeOH, EDTA
	[40]

	Samarium (Sm)
	97.37
	pseudo-second order
	Redlich-Peterson and Sips
	
	[41]

	
	
	
	Langmuir
	
	[42]

	
	
	pseudo-second order
	Freundlich
	
	[43]

	
	17.7
	
	
	
	[44]

	
	14.48
	pseudo-second order
	Lagregen
	
	[45]

	
	135.3
	pseudo-second order
	
	
	[46]

	
	89.28
	pseudo-second order
	Langmuir
	
	[47]

	
	51.1
	pseudo-second order
	Langmuir
	
	[48]

	
	106.78
	pseudo-second order
	Freundlich
	
	[49]

	
	41.66
	pseudo-second order
	Langmuir
	
	[50]

	Europium (Eu)
	
	pseudo-second order
	
	HCl
	[51]

	
	176.31
	
	Langmuir 
	0.2 M HNO3
	[52]

	
	24.39
	pseudo-second order
	Langmuir 
	
	[53]

	
	75.2
	pseudo-second order
	Langmuir 
	0.2 M HCl 
	[54]

	
	19.41
	pseudo-second order
	Freundlich
	1 M KSCN
	[55]

	
	50.5
	
	Langmuir
	
	[56]

	
	37.9
	pseudo-second order
	
	
	[57]

	
	26.8
	pseudo-second order
	Langmuir
	2 M HNO3
	[58]

	
	46.5
	pseudo-second order
	Langmuir
	0.5 M HCl
	[59]

	
	635
	pseudo-second order
	Langmuir and Freundlich
	0.1 M EDTA
	[60]

	
	642
	
	
	
	

	
	628
	
	
	
	

	Gadolinium (Gd)
	281
	liquid film diffusion
	Langmuir
	2 M HCl 
	[61]

	
	15.49
	pseudo-second order
	Freundlich
	0.1 M HCl
	[62]

	
	6.5
	
	
	1 M KCl
	[63]

	
	19.81
	pseudo-second order
	Langmuir
	1 M HNO3
	[64]

	
	66
	pseudo-second order
	Langmuir and Freundlich
	10% NaCl
	[65]

	
	27.2
	pseudo-second order
	Langmuir
	CaCl2
	[66]

	
	301.91
	pseudo-second order
	Langmuir and D-R
	
	[67]

	
	51.36
	pseudo-second order
	Langmuir
	10 % (v/v) HAc
	[68]

	
	8.2
	
	
	1 M HCl and 1 M KCl acidified by a HCl
	[69]

	
	25
	
	
	
	[70]

	Terbium (Tb)
	6.1
	
	
	7M HNO3/ 1 M NaCl
	[71]

	
	16.9
	particle diffusion controlled process
	Freundlich
	0.2 M H2SO4
	[72]

	
	9.4
	pseudo-second order
	Sips
	0.1 M HNO3
	[73]

	
	25.89
	
	Langmuir
	0.2 M HNO3
	[74]

	
	5.521
	
	
	7 M HNO3
	[75]

	
	162.103
	pseudo-first order
	Langmuir
	0.2 M HCl/0.5 M CaCl2
	[76]

	
	214.1
	pseudo-second order
	Langmuir
	0.25 M HCl
	[77]

	
	59.279
	
	
	oxalic acid precipitation
	[78]

	
	
	pseudo-second order
	Temkin
	
	[79]

	
	34.39
	pseudo-second order
	Langmuir and Freundlich
	0.4 M HNO3
	[80]

	Dysprosium (Dy)
	52
	
	
	CaCl2
	[81]

	
	344.6
	pseudo-first order
	
	
	[82]

	
	23.3
	pseudo-second order
	Langmuir
	1 M HCl
	[83]

	
	22.33
	pseudo-second order
	Langmuir
	EDTA
	[84]

	
	377.54
	pseudo-second order
	
	dil HNO3
	[85]

	
	98
	
	
	H2SO4
	[86]

	
	39.19
	
	
	HCl
	[87]

	
	13.975
	
	Langmuir
	0.2 M  magnesium nitrate hexahydrate
	[88]

	
	55.04
	pseudo-second order
	Langmuir
	0.1 M HCl
	[89]

	
	
	
	
	0.025 EDTA
	[90]

	Holmium (Ho)
	87.41
	pseudo-second order
	Sips
	0.2 M HCl/ 0.5 M CaCl2
	[91]

	
	10.4
	pseudo-second order
	Langmuir
	0.05 M H2SO4
	[92]

	
	50.4
	pseudo-first order
	Freundlich
	0.1 M H2SO4
	[93]

	Erbium (Er)
	250
	pseudo-first order
	Lagergren
	4 M HCl
	[94]

	
	106.277
	double exponential
	Freundlich
	0.15 M H2SO4
	[95]

	
	366.6
	pseudo-second order
	Langmuir
	
	[96]

	
	145
	pseudo-second order
	Freundlich
	0.5 M acidic thiourea
	[97]

	
	95.99
	
	Langmuir
	
	[98]

	Thulium (Tm)
	168.57
	
	Langmuir
	0.25 M HNO3
	[99]

	Ytterbium (Yb)
	265.8
	
	Langmuir
	3 M HCl
	[100]

	
	347.6
	pseudo-second order
	Langmuir
	1 M HCl
	[101]

	
	397
	
	
	0.1 M EDTA
	[102]

	
	26.3
	pseudo-first order
	EMTR
	0.3 M HNO3
	[103]

	Lutetium (Lu)
	171.76
	
	Langmuir
	0.35 M HNO3
	[104]

	
	9.37
	
	
	1 M NaCl
	[105]

	Scandium (Sc)
	12.72
	
	Langmuir
	1 M H2SO4
	[106]

	
	1
	pseudo-second order
	Langmuir
	
	[107]

	
	13.3
	
	Langmuir
	0.1 M H2SO4
	[108]

	
	540
	
	
	2 M HCl
	[109]

	Yttrium (Y)
	65
	Elovich
	Langmuir
	
	[111]

	
	5.6
	pseudo-second order
	Freundlich and D-R
	1 M H2SO4
	[112]

	
	180
	pseudo-second order
	Freundlich
	
	[113]

	
	78.22
	pseudo-second order
	Freundlich
	1 M HNO3
	[114]


6. Results:
The results section of the internship report constitutes the culmination of the systematic literature review and comparative analysis of various adsorbents employed for the separation of rare earth elements (REEs) from single and multi-component systems. This section is structured to provide a detailed synthesis of findings, emphasizing key trends, notable outcomes, and insights derived from the collected data.
6.1 Categorization of Adsorbents:
One of the central outcomes of the analysis is the categorization of adsorbents based on their types and structures. This categorization sheds light on the diversity of materials used in REE separation, encompassing traditional ion-exchange resins, versatile activated carbon, and innovative hybrid materials. The categorization lays the foundation for a nuanced understanding of how different materials perform in various scenarios.
6.2 Performance Metrics:
Quantitative data on performance metrics such as selectivity, efficiency, and capacity are systematically presented. This includes a comparative analysis of how different adsorbents perform under varying conditions. The results highlight the strengths and limitations of each material, offering a comprehensive overview of their practical utility in real-world applications.
6.3 Operational Conditions:
The results section delves into the operational conditions influencing the adsorption process. Parameters such as pH, temperature, and concentration are explored in relation to their impact on adsorption efficiency. This information is crucial for optimizing separation processes and designing practical applications of adsorbents in industrial settings.
6.4 Comparative Analysis:
The heart of the results lies in the comparative analysis of different adsorbents across multiple parameters. The tables listing the parameters of various adsorbents facilitate a side-by-side comparison, allowing for the identification of trends and patterns. Noteworthy findings, such as the superior selectivity of certain adsorbents for specific REEs or the challenges associated with regeneration, are systematically discussed.
7. Conclusion:
In summary, the literature review on adsorbents for rare earth element (REE) separation within the context of wastewater treatment illuminates promising pathways for addressing the challenges inherent in this critical field. The discussions underscore the potential of various adsorbents, ranging from traditional ion-exchange resins to innovative hybrid materials, in effectively treating wastewater containing REEs.
By examining mechanisms, comparative performance metrics, and operational conditions, this review contributes to the understanding of how adsorbents can be tailored for efficient REE removal in wastewater. The prospects for future research emphasize the importance of sustainable practices, calling for the exploration of materials that align with environmental considerations.
In the synthesis of key trends, the conclusion provides valuable insights for wastewater treatment practitioners seeking effective, selective, and environmentally conscious methods for REE separation. Challenges and considerations, including scalability and environmental impact, are acknowledged, guiding future endeavors toward more holistic solutions.
In the realm of wastewater treatment, this literature review serves as a roadmap, informing decision-makers and researchers about the advancements, challenges, and potential avenues for sustainable rare earth element separation, contributing to the ongoing dialogue in the pursuit of cleaner and more efficient wastewater treatment practices.
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