
 

 1 

 
 
 

 
JOINT INSTITUTE FOR NUCLEAR RESEARCH 

Veksler and Baldin laboratory of High Energy Physics 
 
 
 
 
 

FINAL REPORT ON THE 
INTEREST PROGRAMME  

 
 
 

Numerical Methods in Theory of Topological Solitons  
 
 

 
                          Supervisor:  

 Prof. Yakov M. Shnir 
 

 Student:  
 Youlin Meng 

      University of Manchester, UK 
 

          Participation period: 
                 October 30 – December 10, Wave 9 

 
 
 
 
 

 
Dubna, 2023 



 

 2 

 
Contents 
 
Abstract…………………………………………………………………………..3 
 
1 Introduction………………………………………………….……………….3 
 
2 O(3) Non-linear Sigma Model…………………..…………….…..…………3 

 
2.1 North & South Pole Stereographic Projections……..…....…..………..…..4 
 
2.2 Soliton Solutions………………………………………………………..…6 
 
     2.2.1  2 Soliton Solutions……………………………………………..…….6 
 
   2.2.2  8 Soliton Solutions………………………………………….………..8 

 
3 Baby Skyrme Model………………………………………………………...11 

 
4 Conclusion…………………………………………………………………...13 

 
References………………………………………………………………………13 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 

 3 

 
  Abstract 

 
Soliton solutions of O(3) Non-linear Sigma Model and Baby Skyrme Model in (2+1) 
dimensions were studied. For O(3) non-linear sigma model, north/south pole 
stereographic projections were used to construct multi-soliton solutions of 
topological charges, Q =2, 8, and generated plots for their energy densities. For baby 
skyrme model, its numerical solution of the profile function, f(r) of the hedgehog 
ansatz is solved numerically as a boundary value problem for the following rescaled 
mass parameters, µ = 0.01, 0.1, and 1.   

 
1 Introduction 
 
Solitons arose from solitary waves / waves of translation which were discovered by John Scott 
Russell at Union Hermiston (Near Edinburgh) in 1834 while conducting experiments for canal 
boats [1]. Soliton is a special solution for special non-linear Partial Differential Equations 
(PDEs), field equations, and different types of models which are used to describe the 
elementary particles in particle physics for example. Soliton solutions are localized (A lump 
of energy), non-dispersive, meaning that it propagates through with constant shape, and they 
are preserved with collisions with other solitons. In field theories, solitons are constructed by 
field potentials with different Lagrangian densities. Different field potential yields different 
soliton solutions. Solitons have many applications including but not limited to particle physics, 
biological physics, non-linear optics, algebraic geometry, and group theory.  
 
 
2  O(3) Non-linear Sigma Model 
 
A sigma model is a scale invariant model that is used to describe the strong interaction between 
pions and nucleons. In this model, soliton solutions can be altered by scale transformations, 
thus, these solutions do not obey the properties of a soliton, these solutions are named ‘lumps’ 
instead. In this model, a real scalar field is a map from a N-dimensional Riemannian manifold 
to a M-dimensional target space [2]. In this section, (2+1) dimensional O(3) sigma model is 
studied with mapping from a unit sphere, 𝑆! onto the plane 𝑅!.   
 
The Lagrangian is of the form  

																																																		𝐿 = "
#
&𝜕$𝜙%)

!
				,																																																															(1) 

 
with the constraint  
 

     𝜙% ∙ 𝜙% = 1     ,                                                              (2) 
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on the field triplet, 𝜙% = (𝜙", 𝜙!, 𝜙&). 
 
 

2.1 North & South Pole Stereographic Projections 
 
The constraint given in Equation (2) determines a unit sphere on a 3-dimensional field space, 
this sphere is positioned at the origin, and it can be described by using 2 independent variables, 
thus, the field space dimension can be decreased to fit the sphere’s dimension. The mapping 
from the sphere to the plane, can be found by using the equation of a straight line in 3 
dimensions, except the points at the north and south poles.  
 
 

 
Figure 1.  North Pole Stereographic Projection  

The equation of a straight line in 3D is of the form   
 

                       /
𝑢
𝑤
0
3 = 4

𝜙"

𝜙!

𝜙&
5	+ 	𝜆 /

𝑢
𝑤
−1
3	.                                                      (3) 

 
Thus, one can find the mapping from the North pole given by 
 

   (𝑢, 𝑤) = ' f!
!"f"

, f#
!"f"

( .                                                        (4) 

 
A complex variable W, can be defined by 
 

       																																				W = f!"#f#
f"

 .                                                            (5) 

(0,0,1) 

(0,0,-1) 

(𝑢,𝑤,0) 

(𝜙",𝜙!,𝜙&) 
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Inverse transformations can be obtained by using the constraint from Equation (2), by 
substituting in the field components, one can obtain the following relations 
 

𝜙" = !'
"('!()! ,                                                       (6)  

 
𝜙! = !)

"('!()! ,                                                      (7) 
 

𝜙& = '!()!*"
"('!()! .                                                       (8) 

 
 
Define 𝑊′ to be the complex variable projected from the South Pole as  
 

                                                               W′ = f"
#(+f!

#

f$
#  .                                                          (9) 

 
Thus, the inverse transformations are of the form 
 
 

𝜙"	- = !'-
"('!	#()!	#	                                                            (10) 

 
𝜙!	- = !)-

"('!	#()!	#	                                                           (11) 
 

𝜙&	- = − '!#()!#*"
"('!	#()!	#		                                                       (12) 

 
 
As the field potentials do not depend on the type of projection, meaning that  
 

      𝜙" = 𝜙"-,                                                                          
      𝜙! = 𝜙!-, 
      𝜙& = 𝜙&-, 
 

one can then discover the connection between these two projections is given by  
 

                        𝑊$ =
!

	&$
 .                                                                   (13) 

 
The Lagrangian can be rewritten in terms of the complex variable, W, as  
 

			𝐿 = '%&'%	&

!"(&&)
# .                                                              (14) 
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This form of Lagrangian in terms of the complex variable z = x+iy and 𝑧 = x-iy is given by 
 

𝐿 = |'&&|#"+'&&+
#

(!"|&|#)#  ,                                                          (15) 

 
where 𝜕. =

"
!
&𝜕/ − 𝑖𝜕0), and	𝜕. =

"
!
(𝜕/ + 𝑖𝜕0). 

 
By using the Euler-Lagrange Equation, one can find the following field equation [2] 
 
 

                             𝑊.. = 2𝑊 &&&&

(!"&&)
# ,                                                      (16) 

 
 

Soliton solutions are the absolute minimum of the total energy and are produced via a 
holomorphic map W(z) for Q > 0 and 𝑊(𝑧) for Q < 0.  

 
W(z) is defined by  
 

                       𝑊(𝑧) = 𝜆 /(.)
0(.)

 ,                                                               (17)  

 
where P(z) and W(z) are polynomials of degree at most N and at least one of them is at degree 
N and lambda is an arbitrary complex number.  

 
 

2.2  Soliton Solutions 
 
2.2.1  Two Soliton Solutions 
 
The following holomorphic map [2] is considered to construct a 2 soliton solution 
 

      𝑊(𝑧) = ("#$)("#&)
("#')("#()

                                                                (18) 

 
where a, b, c, and d are arbitrary complex numbers, and they define the positions of the solitons.  
 
Different values of a, b, c, and d are examined to observe different types of two soliton 
solutions. Plots are generated using Mathematica.  
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Figure 2. Q=2 Energy Density Distribution with a=1, b=4, c=-1, d=-4 

 

 
Figure 3. Q=2 Energy Density Distribution with a=1+I, b=-2.5, c=-I, d=-0.25 
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Figure 4. Q=2 Energy Density Distribution with a=i-3.5, b=-1.75, c=0.45, d=3.5i-2.3 

 
 
 
2.1.1  Eight Soliton Solutions 
 
The following holomorphic map is considered to construct an 8 soliton solution 
 

𝑊1 =
#

"
&(

"

&'"!()
( "

&("!()
( "
&'"(

"
&("(

"

&'$!')
( "

&($!')
( "
&(!)

  ,                                   (19) 

 
and the equivalent south pole map is given by  
 

𝑊2 =
"
#
("
.
+ "

.("!(3
+ "

.*"!(3
+ "

.("
+ "

.*"
+ "

.($!*3
+ "

.*$!*3
+ "

.(!3
)	,              (20) 

 
via Equation (13).   
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Figure 5. Q=8 Energy Density Distribution - Pyramid 

 

 
Figure 6. 𝜙*Field Component Distribution 
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Figure 7. 𝜙+Field Component Distribution 

 
 

 
Figure 8. 𝜙,Field Component Distribution 
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A chain of 8 solitons aligned on the x-axis is given by the mapping of the form  
 

    𝑊! =
"

∑ 	 !"#$	%	∑ 	 !"#$
%!
$&%'	

)
$&*

  .                                            (21) 

 
 

 
Figure 9. Q=8 Energy Distribution - Line 

 
 

3  Baby Skyrme Model 
 
A Skyme Model is a nucleonic model that is used to describe baryons as topological solitons, 
known as skyrmions [2]. Skyme models have many applications including but not limited to 
condensed matter physics, and gravitational physics. In this section, we study the (2+1) 
dimensional baby skyrme model with the Lagrangian density of  
 
         ℒ = "

!
&𝜕$𝜙%)

!
− "

#
&𝜖%45𝜙%𝜕$𝜙4𝜕6𝜙5)

!
− 𝜇!(1 − 𝜙&),				                           (22) 

 
where 𝜙% = (𝜙", 𝜙!, 𝜙&) are the field triplet with the constraint from Equation (2).  
 
The field is a topological map 𝜙: 𝑆! → 𝑆! and the topological charge is given by  
 

                                    𝑄 = ∫ "# &𝜖%45𝜙
%𝜕$𝜙4𝜕6𝜙5) 𝑑𝑆.                                            (23) 
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The energy functional is given by  
 

𝐸 = ∫ℒ 𝑑!𝑥 .                                                          (24) 
 
For soliton solutions in this model, 𝐸	 ≠ 4𝜋|𝑄|, however, isorotational O(2) symmetry takes 
place when Q = 1, thus, the following hedgehog ansatz can be considered 
 

    𝜙O⃗ = (𝑐𝑜𝑠𝜃𝑠𝑖𝑛𝑓(𝑟), 𝑠𝑖𝑛𝜃𝑓(𝑟), 𝑐𝑜𝑠𝑓(𝑟)),                                      (25) 
 

where r and 𝜃  are in plane polar coordinates and f(r) is the profile function and is a 
monotonically decreasing function [2]. 
 
By substituting Equation (27) into Equation (26), one can obtain the following parametrization 
of energy functional  
 
																				𝐸 = 2𝜋 ∫ 𝑑𝑟	(7

!
𝑓-(𝑟)! + 8+9! :(7)

!7
(1 + 𝑓-(𝑟)!) + 𝑟𝜇!(1 − 𝑐𝑜𝑠𝑓(𝑟)))=

> .              (26) 
 
By using Euler-Lagrange Equation, one can find the following 
 
+𝑟 + !"#! $(&)

&
. 𝑓(((𝑟) + +1 − !"#! $(&)

&!
+ $"(&))*+$(&),-)$(&)

&
. 𝑓((𝑟) − )*+$(&),-)$(&)

&
− 𝑟𝜇.𝑠𝑖𝑛𝑓(𝑟) = 0.          (27) 

 
This equation’s solution can be considered as a boundary value problem, one can solve it 
numerically using a shooting method with 4th Runge Kutta Integration in python. The boundary 
conditions are given by 𝑓(∞) = 0, 𝑎𝑛𝑑	𝑓(0) = 𝜋. 
 
 
To evaluate the value of the topological charge, one can perform the following integration, 
using the hedgehog ansatz. 

 
 

𝑄 = [
1
4
(𝜖%45𝜙%𝜕$𝜙4𝜕6𝜙5) 𝑑𝑆 

 

=
2
8𝜋

] 𝑑𝑟𝑑𝜃	𝑓-(𝑟)(sin& 𝑓(𝑟) + cos! 𝑓(𝑟)𝑠𝑖𝑛𝑓(𝑟))
=		!?

>		>

 

 

=
1
2
[ 𝑑𝑟	𝑠𝑖𝑛𝑓(𝑟)𝑓′(𝑟)
=

>

 

 
= 1 
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Figure 10. f(r) profile function plot with re-scaled mass parameters, 𝜇+ = 1.0, 0.1, 0.01. 

 
 
4  Conclusion 
 
For the (2+1) dim O(3) sigma model, its energy density and potential plots of 2 soliton and 8 
soliton solutions were successfully created using north/south poles stereographic projections. 
The field potentials do not depend on the type of projection. One can use a similar mapping 
for the 2 and 8 soliton solutions to generalise the solution to N number of solitons. For the 
(2+1) dim baby skyrme model, f(r) is successfully solved numerically in python, and the plot 
is as expected. As the re-scaled mass parameter increases, f(r) decreases faster.  
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