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1. Introduction

Nowadays particle physics became incredibly popular. There are more and more
accelerators and projects with higher and higher energies. With energy increasing
new channels of decays were discovered, new particles were born. It has become
stimulus for development of new theories and models. In particular, the quantum
chromodynamics (QCD) was created. Studying of strong interaction can provide
deep understanding of matter and energy.

The main problem of high energy physics is large number of secondary particles.
Multiparticle production contains a lot of information about nature of strong
interaction. Analysis of MP process is carried out using statistical methods. During
investigation of MP processes jets were discovered. Jets phenomena can be studied
in all processes where energetic partons (quarks and gluons) are produced.
However, the most common is e*e” annihilation at high energy.

ete” > y/Z° > qq

The first stage of fission partons at high energy is called a stage of cascade.
When energy of partons decreases they must form the hadrons which are
observable. This is the second stage — a stage of hadronization. It cannot be
described with perturbative QCD while the first stage can.

Multiparton spectra inside QCD gluon and quark jets have been studied by
Konishi, Ukawa and Veneziano. The results support the idea that gluon jets are
softer than quark jets and there is order among final partons.

2. Quark and gluon jets

To study multiparticle production we used approach of A. Giovannini [1]. The
main idea is to describe quark and gluon jets and their development through
subnuclear matter as Markov branching processes.

It was proposed to interpret the natural QCD evolution parameter
1 Q?
Yzﬁlog 1+ ab logu—2 (2.1)

as the thickness of the QCD jets. Here 2nb = %(11NC — 2Ny) for a theory with N,
colors and Nt flavours.

There are 3 main elementary processes in QCD jets that contribute with different
weight:



1) A: gluon fission (g — g+ g)
2) A: quark bremsstrahlung (q — q + g)
3) B: quark pair creation (g — q + Q)

The probability for a gluon or quark to convert into mq quarks and mgy gluons in
the (Y, Y+AY) can be given by sum of probabilities:

(gluon) 81.myO01my + Graom,AY + 0(AY) (2.2)
(quark) So.mgO1m + A, AY + 0(4Y) (2.3)

Due to only 3 processes are being allowed in the same interval AY, we get for
gluon (4) and in case of quark (5)

1+a94y + a$9 4y + al%) 4y + o(4Y) (2.4)
1+aiDay + a4y + o(ay) (2.5)
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Notice that a;’y + a,, +ay; = 0anday; +a;7 = 0 because of probability

conservation. Let’s identify a9 as A, a%) as A, and a\%) as B. Now we get AAY

as the probability that a gluon in the infinitesimal interval AY will convert into 2
gluons; AAY as the probability that a quark will radiate a gluon; and BAY as the
probability that a quark-antiquark pair will be born from gluon. We assumed that
A, A and B are Y-independent constants, and each parton act independently from
the others, always with the same probability. After this, the infinitesimal function
for gluon (6) and quark (7) jets are introduced:
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w9 (ug,u,) = z O, my Uy Tu, ' = azguf +agsuf +ayug
mg,quo
w9 (uy,u,) = Au2 + BuZ — (A + By, (2.6)
— (@) mg Mq _ (@) (@)
W(q)(ug,uq) = Z Ungmy g guq a — Ay gUq a7 Ugly
mg,mg=0
w D (ug,uy) = Aluguy — ug) (2.7)

Giovannini defines Prngmgngng (Y) as the probability that mg gluons and mq

quarks will be transformed into ny gluons and nq quarks over a jet of thickness Y.
Probability generating function for a gluon jet (8) and a quark jet (9) will be



n n
G(ug,uq;Y) = z Pl,O;ng,nq(Y)ugguqq (2.8)
ng,nq=0
Ng, Mq
Q(ug,uq;Y) = Po1ngm, (Vug ug (2.9)
Nngng=0

Action of different partons are independent: from a probabilistic point of view
the total mg gluons and mq quarks populations are evolving as (mg+mg) independent
parton populations, each with one initial quark or gluon. This fact summarizes the
branching Markov chain nature of the process. It can be shown through
straightforward calculations that

Z Py mgingmg Vg g =[G (ug, g V)] [Q(ug ug; V)] ™ (2.10)

ng,nq=0

Moreover, since the process is homogenous in Y the transition probabilities obey
Chapman-Kolmogorov equations in general case

ng,mq;ng,nq (Y + Y,) = z ng,mq;lg,lq (Y)Plg,lq;ng,nq (Y,) (2'11)

lg.lg=0

and in case of gluon jet and quark jet respectively

Promgng @ +Y) = D" Prog e Py imyn, (V) (2.12)
Ly lg=0

Posmgng @ +Y) = D" Posa 10 Py gy g (V) (2.13)
lglg=0

Using these additional equations (10), (12) and (13), we can show that



G(ug,ug; Y +Y") = Z Py, (Y + YU s l"
lglq_o

(0]

lg 1
= z z P10ngnq(Y)Pngnqlglq(Y) g q

lglq=0 ngng=0

l l
= z PlOngnq(Y) z Pngnqlglq(Y) Tu q

ngng=0 lg,lq=0
= Z P1omgng (V) |G (g, ug; Y’)]ng[Q (ugr ug; Y’)]nq
ng,nq:O
G(ugug Y +Y) =G[G(ugugY'), Q(ug ug; Y Y| (2.14)

Analogically, probability generating function for quarks is
Q(ug, ug Y +Y") = 0Q[G(ug ug; Y'), Q(ug, ug; Y'); Y] (2.15)
Recalling (6)-(9) and assuming Py .1 o(4Y) = 1 Py 1,01 (4Y) = 1,
G(ug, ug; AY) = uy + w9 (uy,uy )AY + o(4Y) (2.16)
Q(ug, ug; AY) = ug + w9 (uy, uy)AY + o(4Y) (2.17)
Inserting (16), (17) into (14), (15) and replacing Y’ with AY, we get
G(ugugY +4Y) =
= G[ug + w@ (ug,uq)AY +o(4Y),u, + W(q)(ug,uq)AY + o(4Y); Y] (2.18)
Q(ug,uq; Y + AY) =
= Q[ug + w@ (ug,uq)AY +o(4Y),u, + W(q)(ug,uq)AY + 0(4Y); Y] (2.19)

Equations (18) and (19) can be expanded into a Taylor series. Assuming
w9 (ug,uq)AY + 0(4Y) as Au, and W(Q)(ug,uq)AY + 0(4Y) as Au,, we obtain

G G
G(ug + Aug, ug + Aug;Y) = G(ug, ug; ¥) + gAug ous —Aug, +o(...)
G(ug + Aug, ug + Aug; Y) — G(ug,ugY) B G Auy N G Au,
Ay ~ duy AY  duy AY

After dividing both sides and letting 4Y — 0 the equation will be



0G(ug, ug;Y)  9G aG

(9) — @
aY aug w (ug’uCI) + auq w (ug; uq) (220)
For quarks analogically
0Q(ug, ug;Y) _ 0Q aQ
= 9) (@)
oY gu, W (o) + 5w g ug) - 22D)

(20) and (21) are the forward Kolmogorov equations for the generating functions
of the transition probabilities P gmgngng (Y) But for solving our problem it’s

necessary to get corresponding backward Kolmogorov equations, which
immediately follows from inserting (16), (17) into (14), (15) and letting Y — AY.

G(ug,ug; AY +Y') = G[G(ug,ug; Y'), Q(ug, ug; Y'); AY| =
= G(ug ugY) + w96 (ug, ug Y, Q(uy, ug; Y)]AY + 0(4Y)
After dividing both sides by 4Y — 0 we get

‘;_i =wO@[6(ug, ugY), Q(ug,ug Y)] (2.22)
d
% = w(q)[G(ug,uq;Y),Q(ug,uq;y)] (223)

For both cases of Kolmogorov equations there are initial conditions that are
given by

Gly=o = Ug, Qly=0 = Ug (2.24), (2.25)
Using (6), (7) our equations become
G
A —AG — BG + AG?* + BQ? (2.26)
a—Q = —AQ + AQG (2.27)
aY

In an intuitive approach our problem can be reformulated directly in terms of the
transition probability functions (normalized exclusive cross sections of producing
ng gluons and nq quarks) without going through the generating function.

a(g - ng+ny)

Pl,O;ng,nq (Y) =

Ototal

o(q - ng + ng)

PO,l;ng,nq (Y) = o l
tota



We can give certain initial conditions, such as presence of 1 gluon and no quark
or of 1 quark and no gluon at Y = 0, to compose the probability for a gluon and
quark to produce ny gluons and nq quarks in the interval (Y,Y + AY). Taking into
account that only 3 processes are allowed, and at the same time nothing can
happen, it follows for a gluon jet

Pyongn, (Y +4Y) = AAYPLo;ng—an (Y)ng +AAYP o -1, (Y)(n, —1) +
+BAY Py o 4 1n,-2(Y) (g + 1) +
+(1 — AdYn, — AAYn, — BAYng)PLO;ng,nq (Y)+o(Y) (2.28)
and for a quark jet
Potingmg (Y +AY) = AAYPy 11 10, (V) g + AAY Po 1 15, (V) (g — 1) +
+BAY Py 1 11m,—2 (V) (g + 1) +
+(1 — AdYn, — AAYn, — BAYng)PO,mg,nq Y)+o(Y) (2.29)

Dividing by AY and letting AY — 0 we obtain the system of differential
equations.

dPl,O;n n (Y) ~
de *— = (—Ang — Ang — Bng)P 01imgng (V) +
+ APo,1;ng—1,nq (Y)ng + APOrli”g‘lrnq (Y)'(ng B 1) +
+ BP0,1;ng+1,nq—2(Y)'(ng +1) (2:30)

If we are only interested in the gluon exclusive cross section both in a gluon- or a
quark-jet, we obtain

dpl’(); ,0 (Y)
C;l;' = —(B + A)ngpl’o;ng‘o(y) + A(ng - 1)P1,O;ng—1,0(Y) (2'31)
dPO,l;n ,1(Y) ~
d; = _APO,l;ng,l (Y) - (B + A)ngPO,l;ng,l (Y) +
+AP0,1;ng—1,1(Y) + A(ng - 1)P0.1;ng—1,1(y) (2'32)



3. Explicit solutions in particular cases

Finding the explicit solution of the cross section is not easy. However,

approximate solutions can be obtained for particular cases, which can help us to

understand the general problem.

We consider that B = 0,4 # A # 0. It means we forbid gluons to split into
quark-antiquark pair (or absence of flavours in theory). Equations for the cross

sections for ng gluons in the gluon- and quark- jet will be

AP o;n,0(Y)
dli - _Angpl,o;ng,o(y) + A(ng - 1)P1'0i"g‘1'0 ¥)
dPy 1;n,,1(Y) -

+APO,1;ng—1,1 ) + A(ng - 1)Po,1mg—1,1 (Y)
with initial conditions
P1,0;ng,o (0) = 51ng
P0,1;ng,1(0) = 50ng
From (3.1) and (3.3) we get for gluon jet
P p10Y) = e
P1,0,n,,0 V) =e (A —e )t
The corresponding generating function is

%)
—-AY
uge

— g —

ng=1
Moreover,

oG

_ _ _JAY
(ng) —@ |ug=1 =e

Therefore, normalized cross section is

,0 -
M oyt (1 1 )"g :
Ototal — Mgl (ng> (ng)

|

And for quark jet, where u =

(3.1)

(3.2)

(3.3)
(3.4)

(3.5)
(3.6)

(3.7)

(3.8)

(3.9)



Po1.01(Y) = e AY

pu+1) .. (u+n, —1)
ng! ¢

P0,1;ng,1(Y) = _Ay(l — e~ )

The corresponding generating function will be given by

hod 0 o —AY I

ng=0

and average gluon multiplicity (with ug=1)
00
(ng) = u, | iy = u(e? — 1)

The normalized exclusive cross section

(0,9)
b )
Ototal —Olngd
a1 (utng — 1)( (ng) )"g< u >”
ng! (ng) +u (ng) + 1

The second correlation moment is given by

2
fz=0Q" |ug=1 - (Q’ |ug=1) =pe? -1)%2>0

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Let’s analyze out results. (3.14) is a Polya-Eggenberger distribution where x is
half integrated in the limit of N — co. In Two Stage model it is used for description
the cascade stage. (3.9) is a Furry-Yule distribution which corresponds to a (3.14)

with = 1.

The experimental data of e*e” annihilation with energy lower than 9 GeV shows

us f,< 0. To deal with this problem we added binomial distribution for

hadronization stage.
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4. Sources
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