

JOINT INSTITUTE FOR NUCLEAR RESEARCH

Educational and Scientific Center

FINAL REPORT ON THE INTEREST PROGRAMME at Wave 12

"Pixel detector Medipix MX-10"

Supervisor:

K.B. Gikal

Teachers:

K.D. Timoshenko

L.A. Pavlov

Student:

Kholmatova Odina

Participation period:

03.03.2025 - 20.04.2025

Содержание:

Благодарность	3
Аннотация	4
ЛР1 Изучение ионизирующего излучения	
ЛР2 Знакомство с детектором Medipix MX-10	8
ЛРЗ Знакомство с маломощными радиоактивными	
источниками	11
ЛР4 Знакомство с америциевым источником $^{241}_{95}Am$	13
ЛР5 Потери энергии альфа-частиц в воздухе	
ЛР6 Потери энергии альфа-частицы в полиэтилене	
и алюминии	20
ЛР7 Гамма-излучение от $^{241}_{95}Am$	
ЛР8 Применение гамма-излучения	
ЛР9 Естественная радиация	
Литературы	

Благодарность

Я хотела бы выразить искреннюю благодарность команде INTEREST за предоставлиную мне невероятную возможность присоединиться к такому увлекательному научному проекту. Этот опыт углубил мои знания и дал мне ценные навыки, важные для моего развития как молодого исследователя.

Хотела бы выразить искреннюю благодарность Г.Кириллу, К.Тимошенко, Л.Павлову за их помощь и поддержку, они всегда были готовы ответить на мои вопросы, и благодаря их наставничеству мне удалось преодолеть трудности, возникшие во время работы над проектом INTEREST.

Аннотация

Детектор Medipix Mx-10 представляет собой полупроводниковый прибор, созданный в рамках международного сотрудничества, организованного ЦЕРНом. Он способен регистрировать различные виды частиц, такие как α , β и γ -частицы, путем их регистрации на пиксельной матрице. Этот детектор был использован для проведения экспериментов, направленных на изучение свойств частиц и их источников. С учетом активного использования радиоактивного излучения в медицине, энергетике и других областях жизни, важно иметь возможность работать с таким излучением и получать информацию о частицах и их происхождении, для чего и были использованы указанные детекторы.

ЛР1 Изучение ионизирующего излучения

Целью данной работы является получение навыков и знаний по работе с пиксельным детектором Medipix-10.

Задачи, поставленные в данной работе:

- Изучение основ ионизирующего излучения
- Изучение типов детекторов, детектора Medipix MX-10 и программное обеспечение Pixelman
- Изучение используемых источников излучения и концепции коллимации пучков частиц
- Изучение распространения альфа-частиц по воздуху
- Изучение распространения гамма-излучения от источника америция
- Изучение естественного фонового излучения

Ионизирующее излучение — это потоки фотонов элементарных частиц или атомных ядер, способных ионизировать вещество. Из всех существующих типов такого излучения основными(значимыми) выделяют:

- 1. Коротковолновое электромагнитное излучение поток фотонов высоких энергий (гамма-излучение, рентгеновское излучение).
- 2. Потоки частиц (бета-частиц, нейтронов, протонов, мюонов, альфа-частиц и т.д).

На практике в качестве источников излучения будут использоваться радионуклиды. **Радиоактивный распад** - распад, в котором радиоактивные ядра распадаются независимо друг от друга и от времени. Вероятность распада данного ядра не зависит от времени, прошедшего с начала эксперимента, и от количества ядер, оставшихся в образце.

Закон радиоактивного распада: если в образце в момент времени t имеется N радиоактивных ядер, то количество ядер dN, распавшихся за время dt, пропорционально N:

$$dN = -\lambda Ndt$$

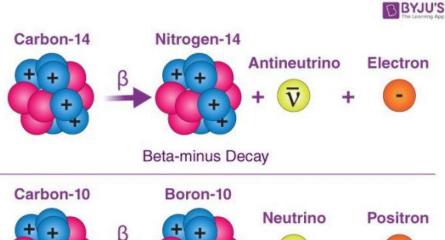
Проинтегрировав, получим закон радиоактивного распада:

$$N(t) = N_0 \cdot e^{-\lambda t}$$

где N_0 - количество радиоактивных ядер в момент времени t=0,

λ-вероятность распада ядра в единицу времени

$$T_{1/2} = \frac{\ln 2}{\lambda} \cong \frac{0.693}{\lambda}$$
 — период полураспада


Альфа-распад - это самопроизвольное испускание атомными ядрами альфа-частиц (положительно заряженная частица, образованная двумя протонами и двумя нейтронами (ядро атома гелия)).

Бета-распад – это самопроизвольное испускание атомными ядрами электрона(позитрона) и электронного нейтрино (электронного антинейтрино), при котором номер Z становится на единицу большим или меньшим.

Существует три типа β — распада

$$^3_1H=^3_2He+^0_{-1}e+\widetilde{\vartheta_e}$$
 - β — распад $^{22}_{11}Na=^{22}_{10}Ne+^0_{+1}e+\vartheta_e$ - β + распад $^{22}_{11}Na+^0_{+1}e=^{22}_{10}Ne+\vartheta_e$ - β + распад

Carbon-10

Boron-10

Neutrino
Positron

$$+$$
 $+$
 $+$
 $+$
 $+$

Beta-plus Decay

Гамма-излучение — это поток электромагнитных волн (фотонов высокой энергии). Испускается при переходах между возбужденными состояниями атомных ядер, при ядерных реакциях, при взаимодействиях и распадах элементарных частиц.

$$_{1}^{1}H + _{1}^{3}H = _{2}^{4}He + \gamma$$

Для частиц, у которых собственная скорость близка к скорости света (или частица является безмассовой, или кинетическая энергия массивных частиц будет сопоставима или превышать энергию $E=mC^2$, необходимо перейти из классической механики в релятивистскую.В релятивистской механике события происходят в четырехмерном пространстве, объединяющем физическое трехмерное пространство и время. Действуют преобразования Лоренца, из которых мы получим

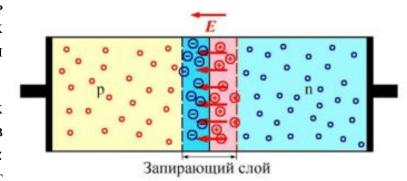
$$E = \gamma E_0 = mc^2 \gamma = \frac{E_0}{\sqrt{1 - \frac{\vartheta^2}{c^2}}}$$

Откуда следует формула для скорости:

Parent Daughter Gamma ray (excited nuclear state)
$$Am_{Z}X \rightarrow Ax + 0 \\ \vartheta = c \frac{1}{\sqrt{1 + \frac{{E_k}^2}{{E_0}^2}}}$$

Где E_0 - энергия покоя, E_k - кинетическая энергия,

$$\gamma=rac{1}{\sqrt{1-eta^2}},\,eta=rac{artheta}{c}$$
 – факторы Лоренца.

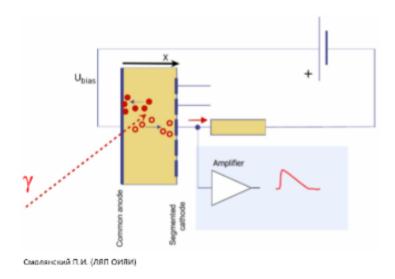

ЛР2 Знакомство с детектором Medipix MX-10

Физические возможности человека не позволяют увидеть или почувствовать частицы без помощи специальных устройств детекторов. Детекторы не только регистрируют частицы, но и позволяют определить их энергии и импульсы, траектории движения и другие характеристики. Регистрация заряженных частиц, как правило, основана на явлении ионизации или возбуждении атомов, которое они вызывают в веществе детектора. Нейтральные частицы, например нейтроны и гамма-кванты, должны сначала как-то провзаимодействовать с веществом, чтобы возникли заряженные частицы, на которые может реагировать детектор.

р-п переход

р-п-переход это область контакта двух полупроводников с разными типами проводимости.

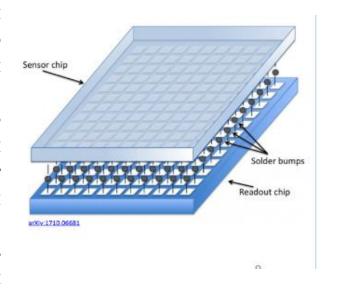
При контакте двух полупроводников п- и р- типов начинается процесс диффузии: дырки из р-области переходят



в п-область, а электроны, наоборот, из п-об- ласти в р-область.

Пограничная область раздела полупроводников с разными типами проводимости (так называемый запирающий слой) обычно достигает толщины порядка десятков и сотен межатомных расстояний.

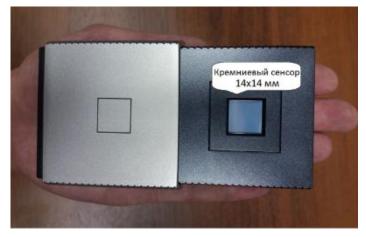
Простейшие полупроводниковые приборы


Принцип работы сцинтилляционных детекторов заключается следующем: при попадании заряженной частицы сцинтиллятор В нем возникает слабая вспышка Свет люминесценции. через вспышки световод поступает В фотоэлектронный умножитель, вырабатывающий

электрический импульс, амплитуда которого пропорциональна потере энергии налетающей частицы.

Детектирование частиц. Гибридные пиксельные детекторы

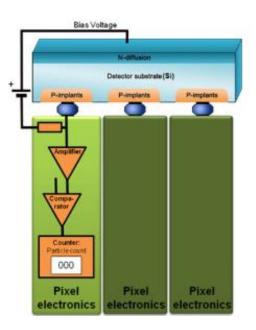
Гибридный пиксельный полупроводниковый детектор представляет собой плоский полупроводниковый сенсор, электрод которого один сплошной покрыт металлизацией, а другой имеет металлизацию в виде матрицы из отдельных пикселей, что позволяет получать координатную И энергетическую информацию.



Основными характеристиками детекторов данного типа являются:

- эффективность регистрации отдельных частиц
- пространственное разрешение
- энергетическое разрешение (в некоторых детекторах)

Комплектация детектора MEDIPIX MX-10



Это пиксельный полупроводниковый детектор ионизирующего излучения. Основными его элементами являются полупроводниковый кремниевый сенсор размером 14×14 мм и толщиной 300 MKM, И микросхема Тітеріх. 256×256 Детектор содержит квадратных пикселей размером 55 мкм, то есть прибор включает в себя более

65 000 отдельных каналов электроники, получающих сигнал из вещества полупроводника. Распознаются типы частиц (a, β, γ) по характерному следу на экране.

Принцип работы MEDIPIX MX-10

Под влиянием ионизирующего излучения в кристалле полупроводника создаются электронно-дырочные (средняя пары необходимая ДЛЯ энергия, образования одной пары в кремнии, составляет 3,62 эВ). Под действием приложенного напряжения они перемещаются к электродам детектора, создавая во внешней цепи электрический импульс. Этот импульс усиливается обрабатывается.

Эффективность регистрации частиц детектором МХ-10

ЧАСТИЦА	ЭНЕРГИЯ	ЭФФ-ТЬ	ЧАСТИЦА	ЭНЕРГИЯ	ЭФФ-ТЬ
Тяжелые заряженные частицы	> 1 MэB	100 %	Рентгеновские лучи	60 кэВ	1 %
Электроны (бета-частицы)	> 10 кэВ	100 %	Гамма-лучи	> 1 MэB	0,1 %
Рентгеновские лучи	6 кэВ - 10 кэВ	100 %	Медленные нейтроны	0,5 М∍В	1 %
Рентгеновские лучи	20 кэВ	25 %	Быстрые нейтроны	1 МэВ	0,1 %

ЛРЗ Знакомство с маломощными радиоактивными Источниками

В лабораторной работе №3 проведен эксперимент с детектором Medipix MX-10 с использованием маломощных источников излучения (урановое стекло, ториевый стержень и сульфат калия).

 $Урановое \ стекло.$ Распад урана ^{238}U и ^{235}U .

В урановом стекле происходят все три типа радиоактивного распада, потому что в стекле содержатся все радионуклиды из рядов распада урана. Оба ряда (^{238}U и ^{235}U) заканчиваются изотоп свинца (^{206}Pb и ^{207}Pb). В веществах, содержащих уран, его количество со временем уменьшается, а количество свинца увеличивается.

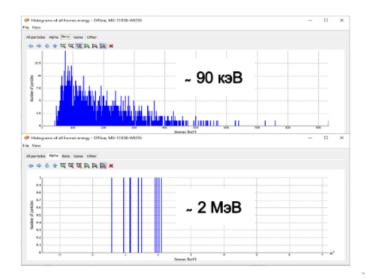
Ториевый стержень. Распад тория ^{232}Th .

В ториевом стержне также встречаются все три типа радиоактивности. Ряд распада заканчивается изотопов свинца ^{208}Pb . Наряду с использованием тория в радиоизотопном датировании, его используют как ядерное топливное сырье, которое при поглощении нейтронов превращается в ^{233}U , который, в свою очередь, является основой уран-ториевого топливного цикла.

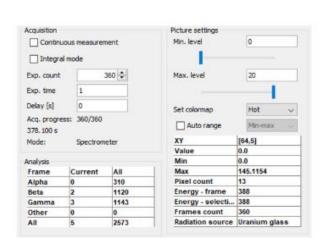
Cульфат калия. Распад калия 40 K

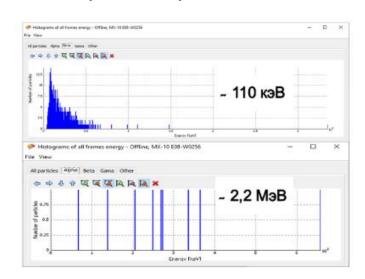
Сульфат калия- удобрение, в состав которого входит изотоп ^{40}K (содержание в удобрении -0.05%). С вероятностью 89,28+-0,13% он распадается через бетараспад в кальций ^{40}Ca .

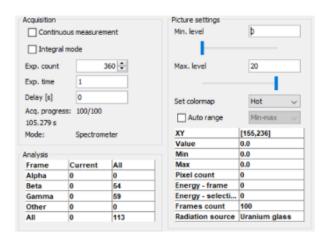
Экспериментальная часть.

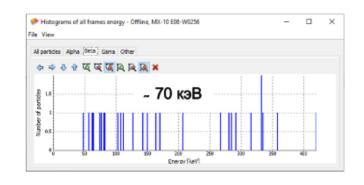

Был проведен эксперимент для сравнения полученной скорости альфа и бетачастиц со скоростью света для каждого источника.

Выберем параметры для проведения эксперимента:


BIAS	Количество	Длительность	Мин.	Макс.
	кадров	экспозиции	уровень	уровень
20 B	360	1 c	0	20


В эксперименте с урановым стеклом, были получены следующие данные:




В эксперименте с ториевым стержнем, были получены следующие данные:

В эксперименте с сульфатом калия, были получены следующие данные:

ЛР4 Знакомство с америциевым источником $^{241}_{95}Am$

Радиоактивный источник ²⁴¹Am расположен в цилиндре из дюралюминия. Вращающаяся латунная защитная крышка, прикрепленная к цилиндру, позволяет экранировать поток частиц или пропускать его. Экранирующая крышка имеет 4 положения. Отверстие в цилиндре обозначено точкой сверху. Когда измерение закончено и источник не используется, крышка должна находиться в положении 1.

Положение 1 Источник закрыт, частицы не выходят.

Положение 2
Частицы выходят через тринадцать отверстий диаметром 2 мм. Наиболее интенсивный поток частии.

Положение 3 Частицы выходят через одно отверстие в форме короткого цилиндра диаметром 2 мм.

Положение 4
Частицы выходят через одно отверстие в форме длинного цилиндра диаметром 2 мм.

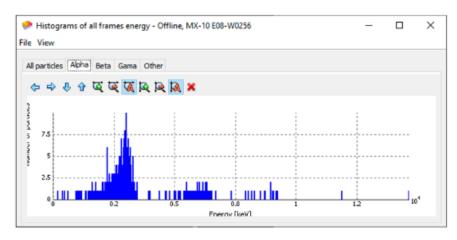
Америций – 241

Период полураспада - 432,6 года

• Распадаясь, испускает альфа-частицы (энергия большинства из которых составляет 5,5 МэВ) и мягкие гамма-кванты с энергией 60 кэВ.

Применение:

- Контрольно-измерительные и исследовательские приборы (в частности, для измерения толщины различных материалов)
- Снятие электростатических зарядов при производстве пластмасс, синтетических пленок и бумаги

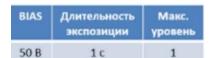

Probable and the second of the

Задание 1

Провожу измерение с соответствующими параметрами

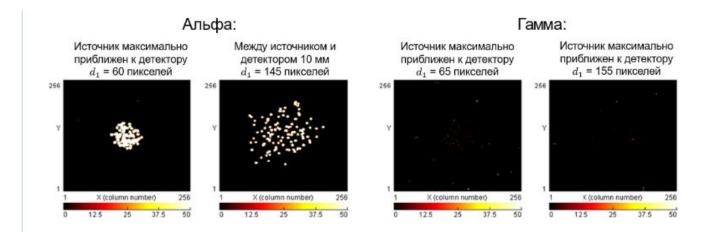
BIAS	Количество	Длительность	Мин.	Макс.
	кадров	экспозиции	уровень	уровень
20 B	360	0.3 с	0	100

E ~ 2,8 МэВ


Задание 2

Провожу эксперимент по определению угла расхождения пучка альфа-частиц для каждого из двух коллиматоров

Для нахождения угла расхождения альфа-частицы используем те же параметры эксперимента, что и в предыдущем, кроме:


Чтобы правильно определить угол необходимо набрать статистику из всех кадров.

Для нахождения угла расхождения гамма-частицы используем также параметры предыдущего эксперимента, кроме:

- 1) Так как диффузия вносит большой вклад в увеличении облака носителей заряда, учитывая особенности регистрации пиксельными детекторами гаммаквантов, след от квантов может занимать несколько соседних пикселей, что плохо влияет на энергетическое и пространственное разрешение. Уменьшить влияние диффузии мы можем повысить напряжение смещения до 50В, что является оптимальным значением BIAS для данного излучения.
- 2) Следы гамма-квантов занимают меньше пикселей, чем альфа-частицы, так как источник излучает гамма-лучей меньше, чем альфа. Чтобы увеличить следы в кадре необходимо увеличить длительность экспозиции.
- 3) Без альфа-частиц диапазон энергий будет невелик, поэтому нужно уменьшить диапазон уровней яркости.

Результаты эксперимента:

Нахожу угол расхождения по следующей формуле:

$$\alpha = 2 \arctan g \frac{d_2 - d_1}{2X}$$

где X — разница расстояния между детектором и источником во 2-ом положении от 1го положения.

d – диаметр следа пучка.

ЛР5 Потери энергии альфа-частиц в воздухе

В лабораторной работе №5 были изучены распространение альфа-частицы по воздуху и концепция средней дальности и ее расчет.

Для того, чтобы приступить к экспериментам необходимо изучить такие понятия как: ионизационное торможение, средние удельные ионизационные потери энергии, средний пробег и другие связанные с этим явления.

При прохождении через вещество заряженная частица за счет кулоновского взаимодействия неупруго рассеивается на электронах и ядрах атомов. Энергия, передаваемая в результате такого неупругого кулоновского рассеяния частицы идет на возбуждение и ионизацию атомов среды. Так, процесс потери частицей энергии за счет ионизации и возбуждения атомов среды при неупругом рассеянии называется ионизационным торможением.

Количественный параметр, характеризующий ионизационное торможение: удельные ионизационные потери энергии $(-\frac{dE}{dx})_{HOH}$, т.е. потери энергии на единицу пути, происходящие вследствие ионизации и возбуждения атомов. По-другому этот параметр называется **тормозной способностью вещества**:

$$\left(-\frac{dE}{dx}\right)_{HOH} = \frac{4\pi e^4 z_a^2}{m_e v^2} n_a B$$

где n_a — атомная плотность (объемная концентрация атомов), В — тормозное число.

Для релятивистского иона:
$$B=Z_a(ln\frac{2m_ev^2}{I_{\mu\rho\mu}(1-\beta^2)}-\beta^2)$$

Полуэмпирически показано: средний потенциал ионизации атома вещества - $I_{\mu\nu} = I_{\mu} \times Z_{a} \left[\mathcal{I}_{\mu} \right]$, $I_{\mu} = 13,55 \ \mathcal{I}_{\mu} = 10,55 \ \mathcal{I}_{\mu} = 10,5$

Подставив тормозное число для релятивистского иона в формулу удельной ионизационной потери энергии, получим формулу Бете-Блоха:

$$\left(-\frac{dE}{dx}\right)_{\text{\tiny MOH}} = \frac{4\pi e^4 z_a^2}{m_e v^2} n_a Z_a \left(ln \frac{2m_e v^2}{I_{\text{\tiny MOH}} (1-\beta^2)} - \beta^2\right)$$

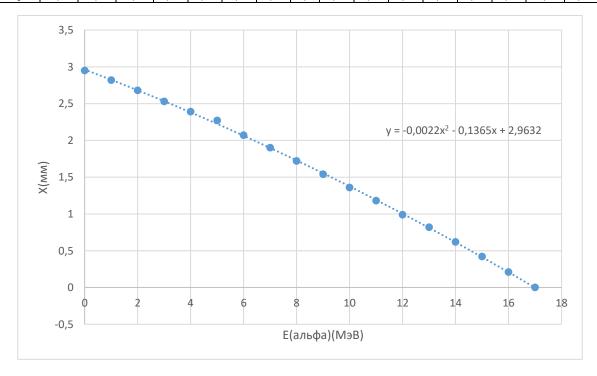
Эксперимент №1. Расчет начальной энергии альфа-частиц

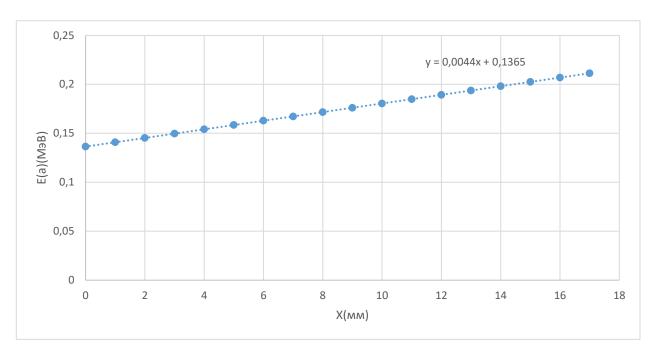
Необходимо установить крышку источника в положение 2. Параметры эксперимента:

BIAS			Длительность экспозиции		Макс. уровень
20 B	Да	100	0,3 c	0	10

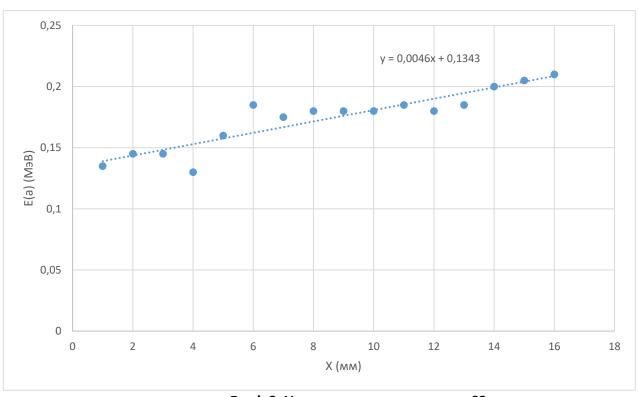
Так как альфа-частицы теряют большую часть своей энергии в воздухе, то необходимо уменьшить диапазон уровня яркости.

После начала измерений нужно отодвигать источник от детектора до тех пор, пока количество альфа-частиц в кадре не будет между 0 и 1. Зафиксировав это положение, замерить расстояние между источником и детектором. Это расстояние будет средним пробегом альфа-частицы в воздухе (R=1.5см).

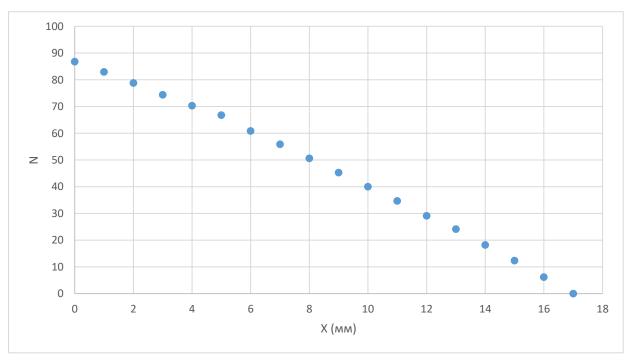

По эмпирической формуле Гейгера получим, что начальная энергия альфачастиц была 2,8 МэВ.


Эксперимент №2. Зависимость длины пробега от кинетической энергии частиц. Параметры с предыдущего эксперимента, кроме:

Непрерывное	Количество
измерение	кадров
Нет	5 000


Производится 20 измерений. После каждого увеличиваем расстояние между источником и детекторов на 1мм.

X[mm]	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
Е(альфа)[МэВ]	2,95	2,82	2,68	2,53	2,39	2,27	2,07	1,9	1,72	1,54	1,36	1,18	0,99	0,82	0,62	0,42	0,21	0



Граф.1. Удельные потери энергии S1

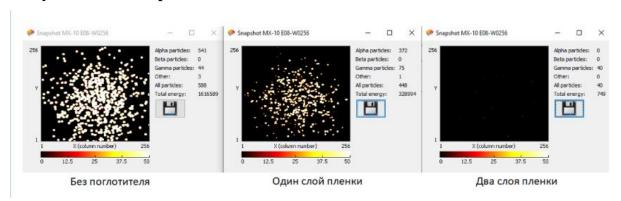
Граф.2. Удельные потери энергии S2

X (mm)	N	E(a)(MэB)
0	86,7647059	2,95
1	82,9411765	2,82
2	78,8235294	2,68
3	74,4117647	2,53
4	70,2941176	2,39
5	66,7647059	2,27
6	60,8823529	2,07
7	55,8823529	1,9
8	50,5882353	1,72
9	45,2941176	1,54
10	40	1,36
11	34,7058824	1,18
12	29,1176471	0,99
13	24,1176471	0,82
14	18,2352941	0,62
15	12,3529412	0,42
16	6,17647059	0,21
17	0	0

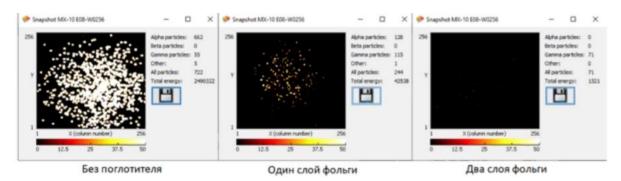
Граф.З. Зависимость количества образованных ионов от расстояния между источником и детектором

ЛР6 Потери энергии альфа-частицы в полиэтилене и алюминии

В лабораторной работе №6 было изучение поглощение альфа-частицы в полиэтиленовой пленке и алюминиевой фольге.


Эксперимент №1. Поглощение альфа-частицы в веществе.

Установив крышку источника в положение 2 (частицы выходят через 13 отверстий диаметром 2мм. Наиболее интенсивный поток частиц) настроили параметры для эксперимента:


BIAS	Количество	Длительность	Мин.	Макс.
	кадров	экспозиции	уровень	уровень
20 B	50	0,3 с	0	100(10)

Сначала проводится измерение без поглотителя (макс. уровень яркости — 100). Далее добавляем по одному слою пленки или фольги до тех пор, пока альфа-частицы не перестанут долетать до детектора (макс. уровень яркости — 10).

Результаты измерений с пленкой:

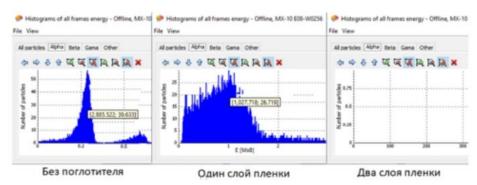
Результаты измерений с фольгой:

Количество частиц на изображения, полученных от измерений, что с фольгой, что с пленкой уменьшается.

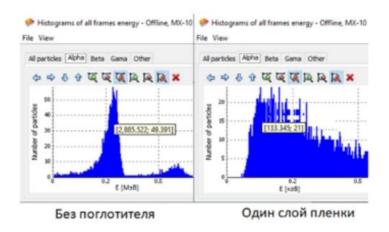
С добавлением первого слоя поглотителя (фольга или пленка) количество альфа-частиц уменьшается. На втором слое альфа-частицы уже полностью останавливаются. Плотность у воздуха меньше, чем у фольги (также как и количество атомов).

На первом слое альфа-частицы взаимодействуют с фольгой, теряют часть своей энергии (энергия идет на ионизацию вещества) и пролетают дальше, а некоторые частицы уже на этом слое полностью теряют свою энергию и пролететь дальше не могут. На втором слое уже всем альфа-частицам не хватает энергии для его преодоления и поэтому полностью останавливаются в веществе. Проходя через воздух альфа-частицы незначительно теряют энергию по сравнению с прохождением через поглотитель, поэтому их количество без поглотителя самое большое. Алюминиевая фольга более плотная, чем полиэтиленовая пленка. Поэтому требует больше энергии на ионизацию и возбуждение атомов.

Эксперимент №2. Потери энергии альфа-частиц в веществе.


Установив параметры с прошлого эксперимента, кроме:

проводятся измерения также как и в предыдущем, сначала без поглотителя и далее добавляем по одному слою, пока альфачастицы не перестанут долетать до детектора. Но после каждого измерения необходимо построить гистограмму энергий альфа-частиц, где по пикам определим энергии частиц.


Результаты измерений с пленкой:

Количество

кадров

Результаты измерений с фольгой:

Энергия частиц уходит на ионизацию и возбуждение атомов вещества. В более плотном веществе альфа-частицы тратят больше энергии из-за ионизации вещества (электроны крепче "сидят" в атомах). Спектр энергии увеличивается из-за рассеивания. Альфа-частицы сталкиваются с атомами вещества и рассеиваются -> частицы меняют свое направление, поэтому мы получаем разброс в энергии. Чем больше атомов, тем больше частицы рассеивается.

ЛР7 Гамма-излучение от $^{241}_{95}Am$

В данной лабораторной работе была изучена регистрация гамма-частиц и сечение реакции.

Распад
$$^{241}_{95}Am$$
: $^{241}_{95}Am \rightarrow ^{237}_{93}Np + ^{4}_{2}He$

После реакции, ядра $^{237}_{93}Np$ находятся в возбужденном состоянии и переходят в основное состояние излучая фотоны с энергией 59,5 кэВ. Также мы можем наблюдать рентгеновские фотоны из электронной оболочки $^{237}_{93}Np$ с энергиями 14-17 кэВ или 21кэВ (возникают при взаимодействии гаммаквантов энергии 59,5 кэВ с окружающим веществом). Гамма-лучи выбивают электроны с электронной оболочки $^{237}_{93}Np$. Эти электроны впоследствии ионизируют атомы кремния. Так, косвенно, детектором регистрируются фотоны.

Мы можем наблюдать два явления.

- 1. Фотоэффект. Взаимодействие, при котором фотон поглощается атомом, передает всю свою энергию орбитальному электрону и выбивает его из атома.
- 2. Эффект Комптона. Взаимодействие. При котором фотон неупруго рассеивается на свободном электроне атомной оболочки, передавая часть своей энергии электрону.

Альфа-частицы, излучаемые америцием, поглощаются в кремниевом детекторе толщиной 300мкм почти со 100% вероятность. Вероятность регистрации фотонов ниже 100%. Доля зарегистрированных детектором фотонов зависит от их энергии. Мы можем определить вероятность регистрации фотонов по формуле:

$$P = \frac{N'}{N_0} * 100\%$$

где N' - число фотонов провзаимодействовавших с веществом детектора, N_0 – число фотонов, попавших на сенсор детектора.

Зависимость вероятности регистрации фотона от его энергии в детекторе Medipix MX-10:

Е [кэВ]	10	15	20	30	40	50	60	80	100	150	200
P [%]	90,5	51,3	26,7	9,51	4,76	3,01	2,21	1,54	1,27	1,00	0,88

Важной частью при изучении взаимодействия гамма-квантов с веществом является сечение реакции. Сечение реакции – величина, характеризующая

взаимодействие двух частиц. Единица измерения – барн (1 барн= 10^{-28} м²). Число взаимодействий можно определить соотношением:

$$N' = N_0 \sigma n$$

 σ – сечение реакции, n – количество ядер, находящихся на площади сенсора.

Если нам известна толщина сенсора - d, то количество частиц мишени на единицу площади можно рассчитать:

$$n = \frac{\rho dN_A}{A}$$

Эксперимент №1. Расчет и оценка количества частиц, попавших на детектор и провзаимодействовавших с веществом детектора.


Крышку источника необходимо установить в положение 2 (частицы выходят через 13 отверстий диаметром 2мм. Наиболее интенсивный поток частиц). Так как мы изучаем гамма-излучение, то нужно экранировать альфа-частицы.

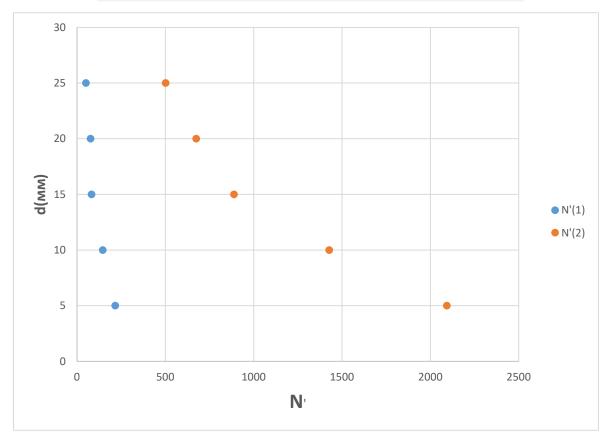
Параметры эксперимента:

BIAS	Количество	Длительность	Макс.
	кадров	экспозиции	уровень
50 B	360	1 c	1

пик	1	2
Е [кэВ]	14	60
N′ [шт]	17 046	1 550

Результаты измерений:

Зная активность источника (A=9,5 кБк), расстояние между источником и детектором (r=5 мм) и площадь сенсора (14*14мм), считая источник точечным, мы можем рассчитать количество фотонов от источника, попавших на детектор. Так как источник точечный, то он излучает во все стороны, образуя сферу.


$$N_0(\text{pac}) = A \cdot t \cdot \frac{S_{\text{дет}}}{S_{\text{o}\phi}} = 2,24 \cdot 10^6$$

Эксперимент №2. Оценка зависимости энергии фотона и их количества от расстояния между источником и детектором.

Крышка источника установлена в положение 3 (частицы выходят через одно отверстие в форме короткого цилиндра диаметром 2мм). Используя параметры предыдущего эксперимента, проводится 6 измерений на различных расстояниях между источником и детектором (d). Начиная с 5мм, шаг 5мм.

Результаты:

d [mm]	5	10	15	20	25
E ₁ [кэВ]	14	14	14	14	14
N_1' [ШТ]	2094	1428	889	675	502
E ₂ [кэВ]	60	60	60	60	60
№ [шт]	217	146	83	77	51

Граф.4. Зависимости энергии фотона и их количества от расстояния между источником и детектором

ЛР8 Применение гамма-излучения

В данной работе было изучено поглощение фотонов в металлах и применение рентгенофлуоресцентного анализа. Проникающая способность гамма-излучения уменьшается с увеличением числа электронов на единицу объема вещества. Поэтому чем тяжелее атомы и плотнее вещество, тем больше поглощение фотонов в нем.

Линейный коэффициент ослабления интенсивности фотона μ :

$$N = N_0 e^{-\mu x}$$

где N — количество фотонов, прошедших через пластину, N_0 — количество фотонов, регистрируемых детектором без пластины, х — толщина пластины.

Эксперимент №1. Изучение прохождения гамма-излучения через различные металлы: алюминий, стал, латунь, свинец. В ходе эксперимента было измерено количество фотонов, регистрируемых детектором от источника без металлических пластин. Далее измерения проводились с металлическими пластинами толщиной 1мм. Пластины из железа и свинца. Измерялось количество фотонов, проходящих сквозь эти пластины.

Результаты измерений:

N ₀	N_{Fe}	N_{Pb}	По результатам мы можем видеть, что наиболее
28 560	10 507	192	эффективное поглощение гамма-излучения
			происходит в пластинке, состоящей из свинца. Так

как количество фотонов, проходящих сквозь эту пластину наименьшее. Рассчитаем линейный коэффициент ослабления интенсивности пучка фотонов для железа и свинца, по полученным данным в эксперименте из формулы:

$$N = N_0 e^{-\mu x}$$

Для железа: $\mu \approx 1$

Для свинца: $\mu \approx 5$

Из формулы видно, что чем больше этот коэффициент, тем количество фотонов, прошедших через пластину, меньше.

Эксперимент №2. Пучок фотонов из источника направлен на металлическую пластину и не попадает на сенсор детектора, но на сенсор попадают фотоны образовавшиеся в пластине в результате ее облучения фотонами из источника.

Был получен следующий набор энергий, по которому можно определить состав пластины:

Е ₁ [кэВ]	E ₂ [кэВ]	Е ₃ [кэВ]
9,3	12,4	24,8

Табличные значения энергий фотонов образовавшихся в результате межуровневых переходов в атоме:

	Kα ₁	Kα ₂	Кβ1	La ₁	La ₂	Lβ ₁	Lβ ₂	Ly ₁	Mα ₁
Ерь[кэВ]	74,97	72,80	84,94	10,55	10,45	12,61	12,62	14,76	2,35
Еси[кэВ]	8,05	8,03	8,91	0,93	0,93	0,95			
E _{Fe} [кэВ]	6,40	6,39	7,06	0,71	0,71	0,72			
E _{sn} [κ∋B]	25,27	25,04	28,49	3,44	3,44	3,66	3,90	4,13	

Сопоставив значения, мы видим, что энергия $9.3\,$ кэB соответствует меди, $12.4\,$ кэB — свинец, $24.8\,$ кэB — олово. Из этого можем сделать вывод, что пластинка состоит из сплава трех металлов: олово, свинца и меди.

ЛР9 Естественная радиация

В лабораторной работе №9 мы изучали естественного фона и излучение продуктов распада радона.

Радиационный фон может быть как природным, так искусственным.

На природные источники радиации приходится 2,4 МэВ. В них входят космические лучи, радон, калий и др.

На искусственные источники радиации приходится 1,01 МэВ. Основным природным источником радиации является радон (55% от общего числа). На большей части России доля облучения от радона 1,5-2,5 МэВ/год.

Продукты распада изотопов радона:

В основном, в процессе радионуклидов возникают три изотопа радона. Больше всего в атмосфере содержится $^{222}_{86}Rn$, содержание $^{220}_{86}Rn$ (торон) значительно меньше и реже всего встречается $^{219}_{86}Rn$ (актинон).

Нуклид	Вид распада	Период Выделяемая		Продукт
		полураспада	энергия,	распада
			МэВ	
²¹⁹ ₈₆ Rn	α	3,96 с	6,946	$^{215}_{84}Po$
²²⁰ ₈₆ Rn	α	55,6 с	6,404	²¹⁶ ₈₄ Po
²²² ₈₆ Rn	α	3,8235 с	5,590	²¹⁸ ₈₄ Po

Эксперимент№1.

Необходимо установить детектор в вертикальное положение и накрыть сенсор бумажной салфеткой. Параметры эксперимента:

Тип	BIAS	Количество	Длительность	Макс.
источника		кадров	экспозиции	уровень
Другой	20 B	20	15 c	20

Результаты:

По числу частиц и времени мы можем определить активность салфетки.

t=15· 28 = 300 с, N=28
$$A = \frac{N}{t} \approx 0.093$$
 Бк

Эксперимент №2

Как было показано в предыдущих работах, альфа-частицы могут преодолевать дистанцию в несколько сантиметров. И для того, чтобы увеличить статистику и качество эксперимента, нам необходимо исследовать большой объем воздуха. Мы можем поместить на всасывающее сопло пылесоса бумажную салфетку, прогнать через нее большое количество находящегося в комнате воздуха. Продукты распада радона осядут на салфетке, и можно будет использовать ее, как радиоактивный источник.

Время работы пылесоса – 10 минут.

В непроветриваемом помещении активность A=N/t t=10*60=600 (s) N=310 A=310/600=0,15 Бк

В проветриваемом помещении активность A=N/t t=10*60=600 (s) N=189 A=189/600=0,315 Бк

Активность в проветриваемом помещении в два раза выше, чем в непроветриваемом.

В проветриваемом помещении активность выше, потому что новые радиоактивные частицы могут поступать в помещение из внешней среды через вентиляцию.

В непроветриваемом помещении активность ниже, так как радиоактивные вещества остаются в помещении на постоянном уровне и их количество постепенно снижается из-за взаимодействия с поверхностями или оседания частиц.

Заключение

В ходе работы с пиксельным детектором Medipix MX-10 и программным обеспечением я приобрела полезный опыт и навыки. У меня была возможность изучить различные радиоактивные источники, что позволило мне лучше понять поведение частиц в веществе. Несмотря на ограниченное количество данных, полученные результаты расширили моё представление о работе детекторов и их применении в научных исследованиях. Благодаря этому проекту и проведённой работе, я значительно углубила свои знания и навыки в области работы с детекторами, что будет полезно для дальнейших исследований.