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1 Introduction

This essay aims to investigate the Parton multiplicity distribution in
quark and gluon jets, in order to understand their internal structure
and fragmentation patterns.

During a relativistic heavy-ion collision (RHIC for short), one
of the possible observables is the multiplicity, the number of sec-
ondary particles that arise from the interaction of elementary parti-
cles. We will discuss that both the multiplicity of charged particles
such as electrons, and of neutral charges such as the Π0, play a
significant role in data analysis. One of the main statistical charac-
teristics of multiplicity is its mean value, the most common number
of secondary particles in a given process. From this quantity, we
can define the degree of spread of values around the mean, the
multiplicity dispersion.

Naturally, the framework of this investigation is QCD, however,
it’s very hard to describe the hadronization stage, when quarks and
gluons confine into hadrons, without deploying a phenomenologi-
cal model. Here, we will adopt the two-stage model which adds a
phenomenological hadronization stage to perturbative QCD calcu-
lations. Essentially, this model states that after the hard scatter-
ing of particles in the initial stage, a hadronization process occurs.
This model allows for the inclusion of confinement effects and de-
scribes the multiplicity distribution for various processes, such as
electron-positron annihilation.

Particle multiplicity is a central concept to understanding the
physics of elementary particles and their interaction properties.
Multiplicity parameters obtained from experiments allow for testing
theoretical phenomenological models such as the 2-stage model.

This essay is developed in the scope that multiplicity is a central
concept in modern high-energy physics thus, providing a pedagog-
ical introduction to the subject.

2 QCD Jets

After a RHIC, complicated out-of-equilibrium processes occur in
the collision environment’s path to hadronization. After the colli-
sion, the quarks and gluons fragments are collimated into a narrow
cone (a jet) of hadrons such as protons, κ,Π, and neutrons among
many other possible hadrons created during such collision, hence,
by identifying and measuring jets, allows one to reconstruct the
kinematics of the elementary QCD interactions after a RHIC.

Despite the Physics of jets being an active area of research, we
will briefly describe how a jet is generated omitting further details.
For a complete reference regarding the Physics of jets, see.1

A traveling quark can radiate a gluon with probability:
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Figure 1: Idealization of a jet generation and its reconstruction.
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∫
αs

dE

E

dθ

θ
>> 1 , (1)

in which αs is the strong coupling of the theory and θ regards the
angle of the gluon emission with respect to the quark movement
direction. Note that this integral diverges if E or θ are small. The
fact that it diverges for small energies is due to the prominent
characteristic of QCD of asymptotic freedom. The probability of
creating a set of jets is described by the jet production cross-
section, an average of produced quarks, anti-quarks, and gluons
weighted by the parton distribution function. The radiated gluon
can also turn into a quark-antiquark pair, which will lead to the out-
of-equilibrium hadronization step of the process. Figure 1 depicts
an idealization of this process described here.

The probability of creating a set of jets is described by the
jet production cross-section, an average of produced quarks, anti-
quarks, and gluons weighted by the parton distribution function. In
the most common jet pair production process, for instance, e+e−

annihilation which is the one that we are interested in this study,
this cross-section is given by:

σij→k =
∑
ij

∫
dx1dx2dtf

1
i (x1, Q

2)f2
j (x2, Q

2)
dσ̂ij→k

dt
. (2)

In this expression, x1 and x2 stands for the longitudinal momen-
tum fraction along the directions of the particle 1 or 2, while Q2 is
the longitudinal momentum transfer along these directions. The
terms fa

i (xa, Q
2) are the Parton distribution function of a particle

species i at beam a.
Finally, let’s recall the QCD evolution parameter in function of

energy:
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Y (Q2) =
1

2πb
ln

[
1 + bα ln(

Q2

µ2
)

]
, (3)

which describes the running of the coupling constant, α, with
respect to a given energy scale µ2. The term b regards to the
QCD’s β function. Clearly, one sees that α decreases as the en-
ergy involved in the process increases leading to the expected phe-
nomenon of the weakening of the strong interaction at high en-
ergies, which in turn, leads to the deconfinement of the theory.
Returning to expression 3, one sees that when Y=0, Q2 = µ2,
the value of the initial energy scale from which the parton begins
to evolve. This quantity also allows us to extract the thickness of
the jet which we will understand as the smallest scale to consider
the parton as an entity. The jet thickness refers to the spatial or
angular spread (the angular distribution of particles within the jet
characterized by the jet radius parameter R is proportional to the
cone size used to define the jet.) of a jet and is not a fixed quantity
but rather a measure of how concentrated or diffuse the particles
in a jet are, typically quantified by their angular spread around the
jet axis. This quantity provides insights into the dynamics of Par-
ton showering and hadronization, as well as the properties of the
medium traversed by them, for instance, narrow jets are indicative
of a highly collimated quark jet due to the high color charge leading
to more radiation, while broad Jets may be due to gluon radiation
or medium interactions, for instance, jets traversing a quark-gluon
plasma tend to broaden and lose energy (jet quenching).

3 Multiplicity in a Heavy-Ion Collision

As relativistic high-energy physics experiments increased the ac-
celerator’s energy, new reaction channels regarding multiparticle
processes were opened leading to a plethora of secondary particles
related to the collision. Among the huge quantity of detectable
observables in a RHIC, this study will focus on the multiplicity,
the number of secondary charged and neutral particles generated
in a given collision. This observable is a probe to investigate the
extremely hot and dense system created right after the collision,
during the out-of-equilibrium phase of overlap between the two
incoming nuclei. Even without much information about the cre-
ated particles, one can extract information about the collision from
the total multiplicity of charged particles, for instance, the depen-
dence on collision energy and centrality.2 Furthermore, the study
of events with the production of a large number of secondary par-
ticles is a tool to understand the hadronic interactions that occur
in the hadronization stage. Multiparticle processes (MP) begin at
energies of a few GeV per nucleon, in which MP starts to dominate
over the elastic and quasi-elastic scattering processes favoring the
already cited emergence of light mesons. At collision energies ex-
ceeding 100 GeV per nucleon, such as those achieved at RHIC and
LHC (ALICE), the conditions for a nearly perfect fluid of decon-
fined quarks and gluons are reached and multiparticle production is
dominated by soft processes, as well as hard scatterings leading to
jets. At even higher energies, the ultra-high-energy collisions, for
instance at LHC with energies ranging from 1 to 13 TeV/nucleon,
multiplicity increases dramatically due to the copious production
of soft gluons.

Is well known that at high energies, one can employ pQCD to
describe the process of partonic fission, the cascade stage. After it,
when partons lose part of their energy, they change into observed
hadrons, a stage in which is not possible to employ pQCD. Thus,

in order to describe the hadronization phenomenological models
are used. It is usually difficult to determine the quark species on
an event-by-event basis. For instance, the experimental results are
averaged over the produced quark types.

Multiparticle processes have led to the discovery of jets, which
we have discussed in the previous section. The most common
processes that lead to partonic production are the e+e annihilation,
deep inelastic scattering of e, µ or ν on nucleons, and hadron-
hadron scattering, however, one of the most suitable processes for
studying multiparticle processes is the e+e- annihilation study of
MP. This process can be achieved by the following events:

e+e− → (γ, Z0) → qq̄ (4)

in which an electron and a positron (e+e−) annihilate, producing
a quark-antiquark pair via the exchange of either a photon (γ) or a
neutral Z boson (Z0). The quark-antiquark pairs eventually form
jets of hadrons, which are observable in detectors.

Statistical tools are fundamental to investigate not just the mul-
tiplicity of a given event but other observables as well. Regarding
the multiplicity, an important statistical bound is events for which
the deviation from the average multiplicity does not exceed two av-
erage values. Events with larger multiplicity are rare thus is hard
to obtain relevant statistics from them.

4 Markovian Branching Process

A Markovian branching process models a population in which each
element in a given -nth generation produces a random number of
offspring for the next generation, n+1. Starting from a seed, it
splits into k offsprings with a given probability which we will call
Pk. These k offsprings constitute the 1st generation which, in
turn, will independently split into a random number of offsprings.
Let’s define a Markov chain:

{Zn} = Z0, Z1, ..., Zk , (5)

in which Zn is a variable that describes the population’s size at
the -nth generation. In a given generation, the elements indepen-
dently give rise to a certain number of offspring:

ξn+1;1, ξn+1;2..., ξn+1;Zn , (6)

in which the term ξ represents the number of members present
in the −nth generation where ξn,j are offsprings of the j − th
member of the n − 1 generation. Hence, the cumulative number
of elements produced in the n+ 1 generation is:

Zn+1 = ξn+1,1 + ξn+1,2 + ...+ ξn+1,zn . (7)

From these definitions, we can define the following generational
sequence:

Z0 = 1 (8)

Z1 = ξ1,1 (9)

Z2 = ξ2,1 + ...+ ξ2,Z1 (10)

... (11)

Zn = ξn,1 + ...+ ξn,Zn−1 , (12)
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being an example of a Markovian branching process. Note that
if in a given step Zk = 0, then necessarily Zk+1 = 0.

With the ideas developed in these sections, we are able to intro-
duce the processes of interest and how to investigate them within
the scope of Markovian branching processes.

5 Processes of Interest

In this project, we are interested in 3 processes that contribute
to the overall distribution of quark and gluon distributions inside
QCD jets:

• A - Gluon fission: g→ g+g

• Ã - Quark Bremssthralung: q→q+ g

• B - Quark pair creation: g→q+q̄

The first process is due to the self-interaction nature of gluons
contributing to the formation of gluon jets in high-energy particle
collisions, such as those observed in proton-proton collisions at the
LHC. The probability of this process increases at higher energy
scales due to the running of the strong coupling constant. The
quark bremsstrahlung implies a quark radiating a gluon as it ac-
celerates or changes trajectory being a very similar process that
occurs with photons in QED. This process plays a critical role in
the formation of quark jets in high-energy collisions. The emitted
gluon can then further interact or decay, contributing to the com-
plexity of the final-state particle shower. The likelihood of gluon
emission increases with energy but depends on angular distribu-
tions and phase space constraints. Finally, quark pair creation is
a process in which a gluon transforms into a quark-antiquark pair.
Quark-antiquark pairs play a role in forming hadrons, for instance,
in the production of heavy quarks if the gluon energy exceeds the
mass threshold, in other words, this process requires that the gluon
has sufficient energy Eg > 2mq to create the pair.

From these processes, we may define the following quantities:
A∆Y as the probability that a gluon in the infinitesimal inter-
val ∆Y converts itself into two gluons; Ã∆Y as the probability
that a quark in the infinitesimal interval ∆Y will radiate a gluon
and B∆Y as the probability that a quark-antiquark pair in the
infinitesimal interval ∆Y will be created from a gluon.

One must keep in mind that a quark in a jet will radiate gluons,
which in turn will give origin to a quark-antiquark pair as discussed
before. Note that the processes A,Ã and B defined above are Y-
independent and each quark or gluon element acts independently
from the others with the same infinitesimal probability to convert
themselves into mq quarks and mg gluons in the interval (Y, ∆Y +
Y ). These probabilities are:

δ1,mgδ0,mq + ag
mg,mq

∆Y +O(∆Y ) (13)

δ0,mgδ1,mq + aq
mg,mq

∆Y +O(∆Y ) (14)

Some words are necessary to explain the meaning of these ex-
pressions: the terms at the left side represent the initial situation
in which there are two probabilities associated with one gluon and
no quarks in the initial state, respectively, thus the δ is the initial
state probabilities. Now, we must discuss the meaning of the right-
side terms. For this, start recalling that we are considering only
the processes A, Ã and B, so we can identify A = ag

20, B = ag
02

and Ã = aq
11. Furthermore, δ1,mg = 1 if mg = 1, one gluon in

the final state and zero otherwise, and δ0,mq = 1 if mq = 0, zero

quarks in the final state and zero otherwise. Hence, by employing
the conservation of probability we have for the gluon parts:

1 + ag
1,0∆Y + ag

2,0∆Y + ag
0,2∆Y =⇒ a1,0 + a2,0 + a0,2 = 0 ,

(15)

from this, a1,0 < 0, for instance, a1,0 = −a2,0 − a0,2. Now, for
the quark part:

1 + aq
0,1∆Y + aq

1,1∆Y =⇒ a1,0 + a0,1 = 0 , (16)

from this, a0,1 < 0, for instance, a0,1 = −a1,1. In fact, 1−ag
20−

ag
02 = 1+ag

10 and 1−aq
11 = 1+aq

11 are probabilities for the quark
or gluon which gave origin on the corresponding jet to continue
undisturbed on their way without converting into anything.

Now we can obtain generating functions that represent the prob-
ability distributions of the quark and gluon emissions multiplicity.

6 Generating Functions

The generation functions allow us to study the evolution of these
multiplicities with respect to a continuous variable, which in this
study we will consider the already defined Y. From the definition
of generating functions:

Gq,g(Y, z) =
∑
n

Pq,g(Y, n)z
n (17)

The reference3 introduces as auxiliary functions:

wg(ug, uq) =

∞∑
mg,mq

ag
mga

q
mqu

mg
g umq

q

= (−A−B)ug +Au2
g +Bu2

q

wq(ug, uq) = −Ãuq + Ãuqug , (18)

Now, defining Pmg,mq;ng,nq(Y ) as the probability that mg and
mq will be transformed into ng and nq gluons and quarks, respec-
tively, we can write the generating functions for the gluons and
quarks as:

G(ug, uq, Y ) =

∞∑
ng,nq=0

P1,0;ng;nq(Y )ung
g unq

q (19)

Q(ug, uq, Y ) =

∞∑
ng,nq=0

P0,1;ng;nq(Y )ung
g unq

q (20)

In which the term P1,0;ng;nq(Y ) represents the probability of a
single gluon and zero quarks at Y=0 and P0,1;ng;nq(Y ) represents
the probability of a single quark and zero gluons at Y=0. Since
the partons are independent, the probability is:

∞∑
ng,nq=0

Pmg;mq;nq,ng(Y )ung
g unq

q =
[
G(ug, uq;Y )

]mg[
Q(ug, uq;Y )

]mq

(21)

Due to the partonic independence, the process is homogenous in
Y, so the transition probabilities obey the Chapman-Kolmogorov
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equations, which relate the joint probability distributions of dif-
ferent coordinate sets on a stochastic process. Suppose that
Pi1,...,in−1(f1, ..., fn) is the joint probability distribution function
of the possible values f1, ..., fn, so the Chapman-Kolmogorov
equation is given by:

Pi1,...,in−1(f1, ..., fn) =

∫ ∞

−∞
Pi1,...,in−1(f1i, ..., fn)dfn (22)

From,3 the Chapman-Kolmogorov equation is:

Pmg,mq;ng,nq(Y + Y ′) =

∞∑
lg,lq=0

Pmg,mq;lg,lq(Y )Plg,lq;nq,ng(Y
′)

(23)

Following,3 it is not hard to obtain the forward and backward
Kolmogorov equations for the generating functions of the transition
probabilities Pmg,mq;ng,ng which allow us to completely solve our
problem. Following3 and recalling that only the processes of quark
Bremsthralung, gluon fission, and quark pair creation processes are
allowed, we obtain the following set of coupled equations:

∂G

∂Y
= −AG+AG2 −BG+BQ2 (24)

∂Q

∂Y
= −ÃQ+ ÃQG (25)

Recall that A, B and Ã refer to the allowed processes described
above. Imposing the initial conditions:

G(ug, uq, 0) = ug (26)

Q(ug, uq, 0) = uq , (27)

we completely solve our problem. However, there’s an alterna-
tive approach to solving our problem in terms of the transition
probability functions, for instance, the normalized exclusive cross
sections for producing ng gluons and nq quarks without referring
to the generating functions. By assuming initial conditions such as
the presence or not of one gluon and no quark or of one quark at
Y = 0, we can build the probability for a gluon or a quark to pro-
duce, in the interval (Y + ∆Y), ng and nq quarks via the allowed
processes here mentioned by imposing conservation of probability.
According to,3 this probability for a gluon jet is:

P1,0;ng,nq (Y +∆Y ) =

[
1− Ãnq∆Y −Ang∆Y −Bng∆Y

]
∗

P1,0;ng,nq (Y ) + Ãnq∆Y P1,0;ng−1,nq(Y )+

B(ng − 1)∆Y P1,0;ng+1,nq−2(Y ) +O∆Y
(28)

Dividing it by ∆Y and letting ∆Y → 0 we get a system of
differential equations equipped with the initial conditions given
above at Y=0. Hence, according to,3 normalized exclusive cross
sections for gluons and quarks produced in a gluon jet can be
determined in terms of the allowed processes, in other words, in
terms of the average partonic multiplicity. The procedure leads us
to the set of equations:

∂G

∂Y
= AG2 −AG−BG (29)

∂Q

∂Y
= −ÃQ+ ÃQG (30)

Note the resemblance with the set of equations previously ob-
tained establishing an equivalence between the two approaches.

Thus, in the next section, we will explore some an approximate
solution that can be obtained for the specific case of a process
without quark pair creation from gluons.

7 Solutions for Gluon Fission and Quark
Bremssthralung

In this work, we will investigate just the solution for the already
mentioned processes of gluon fission and quark Bremsstrahlung
thus, we will not investigate the possibility of gluons splitting into
quark-antiquark pairs, thus we will not consider flavors in the the-
ory. Recall that:

dP1,0;ng,0(Y )

dY
=−AngP1,0;ng,0(Y ) +A(ng − 1)P1,0;ng−1,0(Y )

(31)

dP0,1;ng,1(Y )

dY
=− ÃP0,1;ng,1(Y )−AngP0,1;ng,1(Y )+ (32)

ÃP0,1;ng−1,1(Y ) +A(ng − 1)P0,1;ng−1,1(Y )
(33)

With the initial conditions:

• P1,0;1,0(0) = 1 ; P1,0;ng,0(0) = 0 ; ∀ng > 1

• P0,1;0,1(0) = 1 ; P0,1;ng,1(0) = 0 ; ∀ng ≥ 1

Solving recursively this set of equations with the given set of
initial conditions for different numbers of ng, we obtain that:

P1,0;1,0(Y ) =e−AY (34)

P1,0;ng,0(Y ) =e−AY (1− e−AY )ng−1 (35)

And the mean value:

⟨ng⟩ =
∂G

∂ug

∣∣∣∣
ug=1

= eAY (36)

Using the results derived we obtain that:

G(ug, Y ) =
ug

⟨ng⟩[1− ng(1− 1
⟨ng⟩ )]

(37)

Finally, the variance:

D2 = ⟨n2
g⟩ − ⟨ng⟩2 = eAY (eAY − 1) (38)

Analogously, the quark jet is:

P0,1;0,1(Y ) =e−ÃY (39)

P0,1;ng,1 =
µ(µ+ 1)...(µ+ ng − 1)

ng!
e−ÃY (1− e−AY )ng (40)
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which resembles a Polya-Eggenberger distribution and µ = Ã/A
and, as before, the average gluon multiplicity in the quark jet will
be:

⟨ng⟩ = µ(eAY − 1) (41)

And the normalized exclusive cross-section for producing ng glu-
ons is given by:

σng

σtot
=

µ(µ+ 1)...(µ+ ng − 1)

ng!

[
⟨ng⟩

⟨ng⟩+ µ

]ng[
µ

⟨ng⟩+ µ

]µ

(42)

Thus, the generating function is:

Q =

∞∑
ug=0

ung
g uqP0,1;ng,1(Y ) = uq

[
e−AY

1− ug(1− e−AY )

]µ

(43)

As before the variance:

D2 = µeAY (eAY − 1) (44)

8 Hadronization

Our goal is to adopt the already discussed two-stage method to
describe the phenomenon of interest, the annihilation of electron-
positron pairs at high energies. Recall that this process consists of
two main stages: the cascade stage and the hadronization stage.
Firstly, we write the generating function as:

Pn(s) =
∑
ng

PngPhad(ng, s) (45)

In which the first term on the right refers to the partons and
the other term refers to the hadrons produced from m partons.
The stage of partonic fission is described by a Polya-Eggenberger
distribution which we reproduce here for the sake of readability:

σng

σtot
=

µ(µ+ 1)...(µ+ ng − 1)

ng!

[
⟨ng⟩

⟨ng⟩+ µ

]ng[
µ

⟨ng⟩+ µ

]µ

(46)

In the next section, we will conclude the discussion regarding
the average multiplicity of the event of interest - e+e annihilation
- by using experimental results.

9 Experimental Results

The data on multiplicity distribution were taken from the TASSO
detector at the PETRA accelerator, obtained in 1989 at center-
of-mass energies 14GeV, 22GeV, 34.8Gev and 46.8GeV.4 In the
following plots, we reproduce the obtained data with the respective
statistical errors from the correction procedure.

First of all, it’s important to see that the data is presented in
the shape of the proposed distribution thus, a further study is to
compare the data with the obtained discussed distribution, the
negative binomial distribution (NBD). This was already done in.4

One sees that the statistical distribution describes the data very
well for low energies. A deep discussion regarding the phase space
region of validity of the fit is also done in.4 In general, there is
good agreement between the data and the shape of the proposed
distribution.

Figure 2: Multiplicity Distribution at 14GeV for e+e annihilation
event. Data taken from4

Figure 3: Multiplicity Distribution at 22GeV for e+e annihilation
event. Data taken from4

Figure 4: Multiplicity Distribution at 34.8GeV for e+e annihilation
event. Data taken from4
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Figure 5: Multiplicity Distribution at 43.6GeV for e+e annihilation
event. Data taken from4

10 Conclusion

As we have discussed, one of the main parameters that one may
obtain from high-energy experiments is the multiplicity, the num-
ber of secondary particles generated in such event. A relevant tool
to investigate such phenomenology is perturbative QCD, which
enables the calculation of hard processes in particle interactions.
However, in order to describe it encounters challenges in describ-
ing the hadronization stage, a highly out-of-equilibrium stage of
a high-energy event, in which quarks and gluons combine them-
selves to form hadrons. One of the tools developed to address
this issue is to employ a two-stage model involving the addition of
a phenomenological hadronization stage to the calculations. This
model facilitates the computation of multiplicity distribution for
processes such as electron-positron annihilation, the one that we
investigated in this report. Using this model,

In order to check the theoretical results, we reproduced the ex-
perimental data from TASSO collaboration4 to fit the data obtain-
ing the Multiplicity Distribution for 14, 22, 34.8, and 43.6 GeV.
We see that the data reproduces the shape of the discussed NB
distribution, suggesting a further statistical investigation of the
data employing this distribution. Furthermore, we
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