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Abstract

The Multi-Purpose Detector (MPD) experiment at the NICA accelerator complex aims to explore 
the properties of quark-gluon plasma (QGP), a state of matter believed to have existed shortly after 
the Big Bang.  This study focuses on enhancing electron identification capabilities within heavy-ion 
collisions using machine learning techniques. To achieve this, we utilized Monte Carlo simulations 
to generate and reconstruct collision events, employing sub-detectors such as the Time Projection 
Chamber (TPC), Time of Flight (TOF), and Electromagnetic Calorimeter (ECal) to gather critical  
data.  Various  classification  algorithms,  including  Boosted  Decision  Trees  and  Multilayer 
Perceptrons,  were applied to distinguish between electron signals and hadronic background.The 
results demonstrated that the Boosted Decision Tree (BDTG) algorithm, with a cut value of 0.85, 
provided the best balance between efficiency and purity in electron identification. Most methods 
showed high efficiency and purity across a wide momentum range, although performance varied at 
higher momenta.  These findings underscore the importance of optimizing particle identification 
techniques, which are vital for accurate data analysis in high-energy nuclear physics.

Keywords

Quark-gluon plasma, Multi-Purpose Detector, electron identification, machine learning, heavy-ion 
collisions, Monte Carlo simulations.
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1. Introduction

1.1 Introduction to High Energy and Heavy-Ion Physics

High energy and heavy-ion physics represents a crucial area of study within the broader field of 
physics,  concentrating  on  the  behavior  of  matter  under  extreme  conditions.  By  simulating 
environments of exceptionally high temperatures and densities, akin to those found in the early 
universe  shortly  after  the  Big  Bang,  scientists  aspire  to  gain  insights  into  Quantum 
Chromodynamics (QCD). This theoretical framework describes the strong interactions that dictate 
the dynamics of quarks and gluons.

In these extreme scenarios, conventional hadronic matter transitions into a unique state known as 
quark-gluon plasma (QGP). In this state, quarks and gluons are liberated from their confinement 
within hadrons, allowing for interactions that reveal fundamental truths about matter and the forces 
shaping  our  universe.  Investigating  QGP  and  its  associated  phenomena  is  essential  for 
understanding not only the fundamental forces of nature but also the structure of matter itself and 
the processes that have led to the evolution of the universe.

Research  in  this  domain  also  focuses  on  critical  aspects  such  as  QCD  phase  transitions,  the 
collective behavior of particles in dense nuclear environments,  and the intricate mechanisms of 
particle production and decay resulting from high-energy collisions. These goals are pursued using 
sophisticated large-scale particle accelerators, which facilitate collisions at ultra-relativistic speeds,  
generating the extreme conditions necessary for observing these fascinating phenomena.

By exploring these areas, high energy and heavy-ion physics aims to deepen our comprehension of 
the  universe’s  fundamental  properties,  while  also  shedding light  on the  intricate  processes  that 
underlie the fabric of matter.

1.2 Overview of the Multi-Purpose Detector (MPD) Experiment

The Multi-Purpose Detector (MPD) experiment is a pivotal initiative in the field of high-energy 
physics,  specifically  designed  to  explore  the  properties  of  quark-gluon  plasma  (QGP)  and  the 
fundamental  interactions  that  govern  matter  under  extreme  conditions.  Located  at  the  NICA 
(Nuclotron-based Ion Collider fAcility) facility in Dubna, Russia, the MPD aims to investigate the  
phase transitions of nuclear matter and to enhance our understanding of Quantum Chromodynamics 
(QCD).

~ 4 ~



Figure 1. The overall schematic of the MPD subsystems in the first stage of operation (Stage 1) - cross-section by the 
vertical plane.

At the core of the MPD's mission is  the ability to study heavy-ion collisions at  unprecedented 
energies, which allow researchers to recreate the high-density environment similar to that of the 
early universe. These collisions provide a unique opportunity to observe the behavior of subatomic 
particles in the QGP state, where quarks and gluons are no longer confined within hadrons. By 
analyzing the resulting particle interactions, the MPD seeks to elucidate the properties of this exotic 
state of matter, including its temperature, density, and collective behavior.

Through its multifaceted approach, the MPD experiment aspires to answer fundamental questions 
regarding the nature of QGP, the mechanisms of particle production, and the underlying dynamics 
of strong interactions. The insights gained from this research will significantly contribute to our 
understanding of  the  universe's  evolution  and the  fundamental  forces  that  govern  its  behavior, 
positioning the MPD as a key player in the ongoing exploration of high-energy nuclear physics.

The MPD focuses on several key objectives related to heavy-ion collision studies. First, it aims to 
investigate hadrochemistry by analyzing production ratios of various hadrons to understand QCD 
phase transitions, particularly deconfinement and chiral symmetry restoration, and to map the QCD 
phase diagram in the baryon-rich region.

Another significant goal is to measure anisotropic flow in heavy-ion collisions, which will provide 
insights into the collective dynamics of the quark-gluon plasma (QGP) and its transport properties, 
informing the equation of state (EoS) of the QGP under varying energy densities. Additionally, 
intensity  interferometry,  or  femtoscopy,  will  be  employed  to  extract  spatial  and  temporal 
characteristics of the particle-emitting source, crucial for understanding the system's evolution.

The  MPD  will  also  examine  fluctuations  of  conserved  quantities  like  baryon  number  and 
strangeness to identify critical phenomena and potentially locate a critical end point (CEP) in the  
QCD phase diagram. Furthermore,  studying short-lived resonances and electromagnetic  probes, 
such as dileptons and direct photons, will enable the investigation of hadronic medium properties 
and thermal radiation from the QGP, enriching the understanding of early collision dynamics and 
QGP formation.

One more physics topic that will be studied in MPD, is dileptons, particularly dielectrons (e e⁺ ⁻ 
pairs), represent crucial electromagnetic probes as they do not strongly interact with the medium 
and thus carry unaltered information from all stages of the collision. The precise identification of  
electrons is fundamental for these analyses, as it allows for the reconstruction of the invariant mass 
spectrum of dielectrons, revealing modifications of vector resonances in the medium and thermal 
radiation from the QGP. Studies of low-mass dielectrons provide information about chiral symmetry 
restoration,  while  those  in  the  intermediate  mass  range  offer  direct  access  to  the  effective 
temperature of the plasma during its evolution

By concentrating on these objectives, the MPD experiment seeks to advance knowledge in heavy-
ion physics and explore the QCD phase diagram, particularly regarding the onset of deconfinement 
and chiral symmetry restoration.

1.3 MPD Sub-Detectors
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The  Multi-Purpose  Detector  (MPD)  is  equipped  with  a  sophisticated  array  of  sub-detectors, 
including a Time Projection Chamber (TPC), Time of Flight (TOF) detector, and Electromagnetic 
Calorimeter (ECal). Each of these components plays a crucial role in the accurate identification and 
measurement of particles produced in heavy-ion collisions, facilitating a comprehensive analysis of 
the collision dynamics.

1.3.1 Time Projection Chamber (TPC)

The TPC serves as the primary tracking detector within the MPD framework. It  is designed to 
provide  three-dimensional  tracking  of  charged  particles  through  the  measurement  of  ionization 
energy loss (dE/dx) as particles traverse the gas volume. With a length of 340 cm and a large  
diameter, the TPC enables the reconstruction of particle trajectories with high spatial resolution.  
The uniform electric field within the chamber facilitates the drift  of ionization electrons to the  
readout chambers, allowing for precise momentum measurements.

1.3.2 Time of Flight (TOF) Detector

The TOF detector complements the TPC by providing critical timing information necessary for 
particle identification. Utilizing Multi-gap Resistive Plate Chambers (MRPCs), the TOF achieves  
time resolutions of approximately 80 ps. By measuring the time it takes for a particle to travel from 
the  interaction point  to  the  TOF,  alongside  its  momentum data  from the  TPC,  the  system can 
distinguish  between  different  particle  species,  particularly  within  the  intermediate  momentum 
range.

1.3.3 Electromagnetic Calorimeter (ECal)

The ECal plays a vital role in identifying electromagnetic probes, including electrons and photons. 
Constructed  from lead-scintillator  sandwiches,  the  ECal  is  designed  to  measure  the  energy  of 
electromagnetic showers with high precision. It operates within the MPD's magnetic field, allowing 
for  the  detection  of  particles  over  a  wide  energy  range.  The  ECal  enhances  the  electron 
identification process through the measurement of the energy-to-momentum ratio (E/p), which is 
expected to be approximately 1 for electrons.

1.3.4 Integrated Operation for Electron Identification

The integration of these three detectors is key to the successful identification of electrons. The TPC 
provides detailed tracking and momentum information, while the TOF offers timing data that, when 
combined, allow for the reliable identification of charged particles. The ECal further refines this 
identification by measuring the energy of the detected electrons.

Electrons are identified through a multi-step process: first, candidates are selected based on their  
tracking information in the TPC, followed by timing cuts from the TOF, and finally confirmed 
through  energy  measurements  in  the  ECal.  This  synergistic  approach  enhances  the  overall 
efficiency and purity of electron identification, enabling the MPD to provide valuable insights into 
the dynamics of heavy-ion collisions.

Moreover, the MPD experiment is at the forefront of integrating advanced data analysis techniques, 
including machine learning algorithms, to enhance particle identification and extraction of physical  
observables. Specifically, this work focuses on improving electron identification performance of the 
MPD detector  using  various  machine  learning  techniques  within  the  ROOT framework.  These 
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innovations not only improve the efficiency and accuracy of data interpretation but also pave the 
way for new discoveries in the field.

2. Project Objectives

This work aims to enhance the electron identification capabilities of the Multi-Purpose Detector  
(MPD) experiment at the NICA accelerator complex, with a primary focus on studying quark-gluon 
plasma (QGP) in heavy-ion collisions. The project seeks to implement advanced machine learning 
techniques to improve the accuracy and efficiency of distinguishing electron signals from hadronic 
background. By utilizing Monte Carlo simulations, the work generates and reconstructs collision 
events,  creating  a  robust  dataset  for  comprehensive  analysis.  Furthermore,  it  evaluates  the 
performance of various classification algorithms, including Boosted Decision Trees and Multilayer 
Perceptrons, to assess their effectiveness in identifying electrons across different momentum ranges. 
The study also aims to determine optimal cut values that achieve a balance between efficiency and 
purity in electron identification.

3. Methodology

The investigation begins with the simulation and reconstruction of heavy-ion collision events, this 
process  involves  three  main  stages:  event  generation,  particle  transport  simulation,  and 
reconstruction of the detector signals. These stages are outlined below, focusing on their physical  
and computational aspects, which ultimately enable the study of particle interactions within the 
MPD (Multi-Purpose Detector). The primary goal is to utilize the TPC (Time Projection Chamber), 
TOF (Time-of-Flight) system, and ECal (Electromagnetic Calorimeter) for reconstructing particle 
trajectories,  identifying  particles,  and  measuring  their  properties.  These  steps  are  crucial  for 
generating the data required for later analysis using machine learning techniques, which directly 
supports the ultimate objective of this work: to improve electron identification performance in the 
MPD detector through the application of various machine learning techniques within the ROOT 
framework.

Event generation is performed using the UrQMD (Ultra-relativistic Quantum Molecular Dynamics) 
model,  which  describes  hadron  interactions  in  detail  based  on  principles  of  quantum 
chromodynamics  (QCD).  In  this  stage,  fundamental  parameters  such  as  the  properties  of  the 
colliding nuclei (xenon with a mass number of 124 and an atomic number of 54), the center of mass  
energy (7 GeV), the impact parameter (-14), and the total number of simulated events (1,000) are  
defined.  Additionally,  specific  configurations  are  adjusted,  such  as  deactivating  certain  particle 
decay channels,  allowing for  a  detailed focus on key physical  processes.  The generated events 
provide the initial conditions required for subsequent stages.

In the simulation stage, the particles produced during the generated events are transported through 
the geometry of the MPD (Multi-Purpose Detector) using the MPDROOT framework. This process 
employs the Virtual Monte Carlo (VMC) engine with Geant4 as the transport model, considering 
phenomena  such  as  energy  loss,  multiple  scattering,  and  secondary  particle  generation.  The 
geometry includes main components such as the Time Projection Chamber (TPC), the Time-of-
Flight (TOF) system, and the Electromagnetic Calorimeter (ECal), which are essential for particle 
tracking,  time measurement,  and energy deposition detection.  Additionally,  a  uniform magnetic 
field  of  5  kG is  configured to  allow the  reconstruction of  charged particle  momenta  from the 
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curvature  of  their  trajectories.  The  results  of  this  stage  include  detailed  data  on  the  detector's  
response, stored in ROOT files, which are used as input for the reconstruction stage.

The  final  stage  involves  reconstructing  the  raw  detector  signals  into  significant  physical 
observables, such as trajectories, momenta, and particle identification. The TPC data is processed 
with  clustering  and  tracking  algorithms,  such  as  the  Maximum Likelihood  Estimation  Method 
(MLEM) and the Kalman filter, to accurately identify the trajectories and momenta of the particles. 

3.1 Data preparation for Machine Learning training

The process  of  preparing  data  for  machine  learning training  involves  extracting  and analyzing 
specific parameters from reconstructed heavy-ion collision events. These parameters include DCAx, 
DCAy,  DCAz,  dPhi_TOF,  dz_TOF,  dPhi_ECal,  and  dz_ECal,  which  provide  critical  physical 
insights into the particle trajectories and interactions within the Multi-Purpose Detector (MPD). 

These  variables  were  represented  through histograms to  scrutinize  their  distributions.  Gaussian 
function fits were employed on these distributions to extract the mean (µ) and standard deviation 
(σ).These  parameters  were  expressed  as  functions  of  momentum  using  analytical  approaches, 
including polynomial forms. 

These fitted parameters are crucial for building the trees that capture important information about 
particle interactions and tracks. This helps extract key features needed to improve the predictive 
power  of  machine  learning  algorithms,  aiming  to  enhance  particle  identification  in  the  MPD 
experiment.

3.1.1 Distance of Closest Approach (DCA) 

The Figure 2 illustrate the relationship between the Distance of Closest Approach (DCA) in the X, 
Y, and Z dimensions versus the momentum (p) of particles. The mean DCA values reveal how the 
average  proximity  of  particle  tracks  to  the  primary  vertex  varies  with  increasing  momentum,  
showcasing a characteristic trend where the mean DCA diminishes as momentum rises, particularly 
notable in the Y and Z dimensions. This trend suggests that higher momentum particles tend to have 
trajectories that  are closer to the collision point.  Conversely,  the sigma DCA plots indicate the 
spread or uncertainty of the DCA measurements. A decreasing trend is observed, indicating that as 
particle momentum increases, the precision of the DCA measurements improves.
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Figure 2. Dependence of Mean and Sigma DCA on Particle Momentum in X, Y, and Z Directions.

3.1.2  Matching in the Time of Flight (TOF) Detector

Figure 3 shows the relationship between the mean and sigma values for matching tracks in the Time 
of Flight (TOF) Detector as a function of particle momentum (p).

Figure 3. Analysis of Track Matching in TOF.

The  mean  dz  (difference  in  longitudinal  position)  remains  relatively  stable  across  different 
momentum levels (p). In contrast, the mean dPhi (difference in azimuthal angle) shows a slight 
variation with momentum, but it does not exhibit significant fluctuations. 

The  sigma  dz  plot  demonstrates  low  uncertainty  in  the  longitudinal  position  measurements, 
reinforcing the reliability of the TOF detector's  timing data.  This low uncertainty is  crucial  for 
ensuring that particle trajectories are accurately reconstructed. On the other hand, the sigma dPhi 
shows a decreasing trend as momentum increases.  This  indicates that  the measurements of  the 
azimuthal angle become more precise at higher momenta, enhancing the overall accuracy of particle 
identification.  The  dphi  distributions  in  the  TOf  matching  are  expected  to  exhibit  charge 
dependence in their mean, which is not considered in this study.

3.1.3  Matching in the Electromagnetic Calorimeter (ECal)

Figure 4 shows the relationship between the mean and sigma values for matching tracks in the 
Electromagnetic Calorimeter (ECal) as a function of particle momentum (p).
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Figure 4. Analysis of Track Matching in Ecal.

The mean dPhi (difference in azimuthal angle) shows a non-linear relationship with momentum (p).  
This indicates that as the momentum of particles increases, the differences between their expected 
and  actual  angles  change,  reflecting  variations  in  particle  behavior  at  different  energies. 
Additionally,  the  mean  dz  (difference  in  longitudinal  position)  decreases  with  increasing 
momentum, suggesting that higher momentum particles tend to be closer to their expected positions 
relative to the collision point.

The sigma dPhi plot reveals that the uncertainty in azimuthal matching decreases as momentum 
increases. This means that the measurements become more reliable at higher momentum levels. In 
contrast, the sigma dz exhibits fluctuating behavior, indicating that while there is an overall trend of  
improved consistency in some regions, there are also moments where the uncertainty increases at  
specific momentum ranges. In the Ecal matching, the dphi distributions are anticipated to show 
charge dependence in their mean, a factor that is not addressed in this study.

3.2 Machine Learning Implementation for Electron Identification

The implementation of machine learning techniques for  electron identification within the MPD 
(Multi-Purpose  Detector)  utilized  the  TMVA  (Toolkit  for  Multivariate  Analysis)  framework 
integrated with ROOT. 

The training process was designed to configure and simultaneously train multiple classification 
algorithms,  aiming  to  effectively  distinguish  between  signal  (electrons)  and  background  (non-
electron particles) based on a variety of detector response parameters. The primary input variables 
for the classification algorithms included reconstructed track momentum (p), energy loss measured 
by the Time Projection Chamber (dedx), the total number of hits recorded in the detector (NHits), 
the ratio of energy to momentum (Ebyp), time-of-flight beta calculated using ECal information 
(Tofbeta_ECal), measured time-of-flight beta (Tofbeta), pseudorapidity of the reconstructed track 
(pseudorapid), and azimuthal angle (Phi).

The  training  process  incorporated  particle  selection  criteria  that  applied  quality  cuts  on  track 
parameters, including Distance of Closest Approach (DCA), matching variables, the number of hits, 
and  relevant  kinematic  properties.  This  rigorous  selection  ensured  that  only  well-reconstructed 
tracks were utilized for training.

3.2.1 Implemented Methods

 Probability-Based Classifiers

The  Likelihood Method approach  uses  a  naive  Bayesian  estimator  to  model  the  probability 
distributions  of  input  variables  for  different  classes,  such  as  electrons  and  non-electrons.  This 
method is effective because it captures the unique characteristics of variables like dE/dx and E/p,  
which are important for identifying electrons.  K-Nearest Neighbors (KNN) classifies particles by 
comparing them to similar training samples nearby. Using 20 neighbors and a Gaussian kernel is a 
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good choice for particle physics, where the parameters often cluster in the feature space. This helps 
in making accurate classifications based on proximity.

 Neural Networks

The Multilayer Perceptron (MLP) uses hyperbolic tangent activation functions and hidden layers 
that match the number of input variables. This configuration is effective for capturing nonlinear 
relationships between key variables, such as momentum, dE/dx, and E/p. These relationships are 
crucial for distinguishing electrons from other types of particles.

 Boosted Decision Trees

The  Boosted  Decision  Tree  (BDT) method  uses  an  adaptive  approach  with  850  trees  and  a 
maximum depth of 3.  This is  particularly effective for particle identification,  as it  can manage 
complex correlations between variables. The Gradient Boosted Decision Tree (BDTG) is a variant 
that employs 1000 trees and focuses on gradually improving classification accuracy. It iteratively 
reduces classification errors, especially in difficult areas of the particle phase space, making it a  
powerful tool for enhancing particle identification.

These methods are highly relevant because they effectively capture complex correlations among 
variables, handle non-Gaussian distributions, and ensure a balanced representation of signal and 
background through appropriate data preparation, preventing bias in classification.

The presented graphs in Figure 5 illustrate the overfitting check for the classifiers that we used 
(BDT, BDTG, KNN, Likelihood, and MLP) aimed at distinguishing signals from background. 

Figure 5. Overfitting check for different classification methods. The graphs display the response distributions of signal 
and background for BDT, BDTG, KNN, Likelihood, and MLP classifications, along with the results of the 

Kolmogorov-Smirnov test quantifying the difference between both distributions.

Overtraining, occurs when a model learns the training data too well, including noise and outliers, 
which can lead to poor performance on new, unseen data. This can result in a model that appears 
accurate during training but fails to generalize.

The analysis of the classifiers reveals that those with Kolmogorov-Smirnov (K-S) test probability 
values less than 0.01 may be experiencing overtraining. For example, the BDTG, with a K-S of 
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0.003, indicates an excessive fit to the training data. Other models, such as KNN and the Likelihood 
classifier, have K-S values greater than 0.01.

In  summary,  the  BDTG  model  shows  signs  of  overtraining,  which  could  affect  its  ability  to 
generalize.

The analysis of the ROC (Receiver Operating Characteristic) curve reveals important insights into 
the  performance  of  the  classification  methods  in  balancing  signal  efficiency  and  background 
rejection, the information obtain form our training it is in Figure 6. 

Figure 6. Background rejection versus signal efficiency for various classification methods. The graph illustrates the 
trade-off between the efficiency of signal detection and the rejection of background events across BDT, BDTG, MLP, 

KNN, and Likelihood techniques.

The  Likelihood  classifier (black  line)  demonstrates  the  best  overall  performance,  achieving 
exceptionally high background rejection (greater than 0.9) until a signal efficiency of approximately 
0.85, after which its performance declines rapidly. Both the BDTG and BDT classifiers (blue lines) 
also show excellent performance at high signal efficiencies, though they do not quite match the 
Likelihood  classifier  in  this  critical  region.  The  MLP classifier (green  line)  performs  well  but 
exhibits slightly lower background rejection, particularly in the mid-range of signal efficiencies. In 
contrast, the  KNN classifier (red line) ranks as the weakest, with significantly lower background 
rejection capabilities across most of the signal efficiency spectrum.

Overall,  these  findings  suggest  that  while  the  Likelihood  classifier  provides  the  best  balance 
between signal detection and background rejection, it is essential to address the overfitting concerns 
identified  earlier,  potentially  through  regularization  techniques,  cross-validation,  or  parameter 
tuning, before implementation.

Once the data preparation stage and the implementation of machine learning techniques for electron 
identification are complete, the next step involves analyzing efficiency and purity across different 
cuts and models.  This analysis will  generate multipanel plots that  illustrate how efficiency and 
purity behave with each cut and model applied. In the results section, these plots will be described,  
highlighting the variations in efficiency and purity.  From this analysis,  the best cuts from each 
model will be selected and compared, enabling us to identify the most effective configurations for 
electron identification within the context of the MPD experiment.
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4. Results

4.1  Efficiency Estimation

The Figure 7 illustrates the efficiency of electron identification as a function of momentum (p) in 
GeV/c, employing various classification methods: MLP, BDT, BDTG, KNN, and Likelihood, with 
different cut values.

Figure 7. Efficiency of electron identification versus momentum (p) in GeV/c for classification methods: MLP, BDT, 
BDTG, KNN, and Likelihood. Each plot displays the efficiency trends across various cut values, emphasizing the 

comparative performance of each method across low and high momentum ranges.

Most  methods  exhibit  high  efficiency (0.8-1.0)  in  low momentum ranges  (0-1  GeV/c),  with  a 
notable decrease in efficiency at higher momenta (>1 GeV/c). BDTG, particularly with a cut of 
0.85, maintains the highest efficiency across nearly the entire momentum range, especially at higher 
momenta  where  other  methods  decline  more  rapidly.  BDT  and  MLP show  similar  patterns,  
demonstrating  good  efficiency  up  to  approximately  1  GeV/c  before  starting  to  decline.  KNN 
exhibits  moderate  performance,  with  more  pronounced  fluctuations  throughout  the  momentum 
spectrum.  In  contrast,  Likelihood  shows significantly  poorer  performance,  especially  with  cuts 
≥0.10, experiencing a steep drop in efficiency at higher momenta.

4.2  Purity Estimation

The Figure 8 illustrates the purity of electron identification across the same momentum range and 
classification methods. Purity is a critical metric for assessing the quality of electron identification,  
as it indicates the proportion of correctly identified electrons among all identified particles.
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Figure 8. Purity of electron identification versus momentum (p) in GeV/c for classification methods: MLP, BDT, 
BDTG, KNN, and Likelihood. 

Most methods maintain very high purity (>0.9) across a wide momentum range (0.2-1.5 GeV/c). 
This consistency suggests that the classification methods are effective in distinguishing electrons 
from other particles within this momentum interval. MLP, BDT, BDTG, and KNN all demonstrate 
excellent purity, ranging from approximately 0.95 to 1.0 throughout most of the momentum range. 
In contrast, the Likelihood method exhibits markedly different behavior, achieving high purity only 
at very low momenta (0.1-0.3 GeV/c) before experiencing a dramatic decline.

Unlike efficiency, purity remains remarkably consistent across different cut values for MLP, BDT, 
BDTG, and KNN. This  indicates  that  these methods robustly  separate  electrons from hadronic 
background, regardless of adjustments to the threshold settings.

4.3 Comparison of Best Cuts

The  bottom  two  graphs  provide  a  comparison  of  the  best-performing  cut  values  for  each 
classification method in terms of efficiency and purity. This analysis highlights the strengths and 
weaknesses of each method across the momentum spectrum.

                                          (a)                                                                              (b)

Figure 9. Comparison of the best-performing cut values for each classification method in terms of efficiency (a) and 
purity (b).
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4.3.1 Efficiency Comparison

BDTG with a cut value of 0.85 and BDT with a cut of 0.00 clearly outperform the other methods  
across the entire momentum range. MLP, with a cut of 0.60, follows closely behind, maintaining 
good  efficiency  up  to  approximately  1  GeV/c.  In  contrast,  KNN (0.50)  and  Likelihood  (0.10) 
exhibit  lower  efficiency,  particularly  at  mid  to  high  momenta,  indicating  their  limitations  in  
effective electron identification.

4.3.2 Purity Comparison

In terms of purity, MLP (0.60), BDT (0.00), BDTG (0.85), and KNN (0.50) all sustain excellent 
purity  levels  (>0.95)  across  most  of  the  momentum  range.  However,  Likelihood  (0.10) 
demonstrates dramatically lower purity, except at very low momenta, making it generally unsuitable 
for effective electron identification despite its strong background rejection capabilities noted in the  
ROC curve analysis.

The  BDTG  algorithm,  with  a  cut  value  of  0.85,  appears  to  be  a  strong  option  for  electron 
identification, effectively balancing efficiency and purity across a wide range of momentum. Its 
consistent performance suggests it is well-suited for the MPD experiment.

In  the  performance  comparison,  BDTG  is  the  top  performer,  followed  by  BDT,  which  also 
maintains a solid balance. The MLP shows good results but has slightly lower efficiency at higher 
momenta. KNN achieves decent purity but struggles with efficiency, particularly in mid to high 
momentum ranges. The Likelihood method tends to underperform across various cuts,  showing 
limitations in both purity and efficiency.

All  methods  demonstrate  good  performance  between  0.2-1.0  GeV/c,  but  identifying  electrons 
becomes more difficult  above 1.5 GeV/c, highlighting the need for further research to improve 
capabilities in this area. The results illustrate the trade-off between efficiency and purity in particle 
identification;  stricter  cut  values tend to enhance purity at  the expense of  efficiency.  However, 
BDTG manages to maintain a commendable level of both, making it  a useful tool for electron 
identification without significant compromises.

5. Conclusion

In this report, we explored how to improve electron identification in the MPD experiment using 
modern machine learning techniques. Through simulations and the use of different algorithms, the 
goal  was  to  distinguish  electron  signals  more  efficiently  and  accurately  from the  many  other 
particles produced in heavy-ion collisions.

The results show that decision tree-based methods, especially the BDTG algorithm, offer a good 
balance between efficiency (the ability to find as many electrons as possible) and purity (ensuring 
that  the  identified  electrons  are  truly  electrons  and  not  other  particles).  However,  it  was  also  
observed that as the particle momentum increases, correctly identifying electrons becomes more 
difficult, suggesting that there is still room to improve the techniques used.

Overall,  this  study  confirms  that  the  use  of  machine  learning  tools  can  bring  significant 
improvements to high-energy physics experiments, making it possible to analyze large volumes of  
data more precisely. Nevertheless, it is important to be cautious and to keep refining the methods, as 
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each  algorithm  has  advantages  and  limitations  that  must  be  considered  according  to  the 
experimental context.
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