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ABSTRACT 

The Intelligent Power Distributor (IPD) is an essential system that powers the NICA-
MPD Platform at the JINR. Several electrical and electronic components are involved 
in managing the supply of power to this platform. However, owing to the operational 
inefficiency of these components, heat generation is a big issue that leads to rise of 
operating temperature inside the enclosure and further side-effects like deterioration 
of life-span, component derating, accidental failures etc. In this project, the heat 
dissipation of components inside the IPD is determined and a heat simulation is carried 
out. It is found out that operational temperature for most of the components exceeds 
the safety limit. Also, due to derating, the performance of components is reduced from 
its original standardized rating. To mitigate these issues, a small-sized cooling fan is 
installed and revised simulations show significant reduction in temperatures. Yet, due 
to restricted air flow to some areas, further heat-mitigation strategies are required, like 
use of additional cooling fans. Based on the analysis carried out and some inputs from 
the IPD team, slight elongation of the IPD’s cabinet enclosure to make space for an 
additional cooling fan would be one of the plausible approaches. Further study on the 
impact of rated performance of components and other cooling approaches is advised. 

INTRODUCTION 

Thanks to the modern-day electronics that power the essentials, it is now possible to 
accomplish tasks like never-before. Be it making calls on your smartphone or carrying-
out extremely complex experiments at the JINR laboratory, everything is powered by 

electricity and there are several electronic 
components in play. Just like there’s a power 
supply/distribution unit for your computer or 
TV, The Multi-Purpose Detector (MPD) 
platform, one of the most essential parts of the 
Nucleotron (NICA) project has its electric 
power managed by the Intelligent Power 
Distributor (IPD). There are several 
components like MCBs, charge controllers, 
battery modules, CPU units etc that are 
involved in power management and supply. 

 

However, owing to the universal fact that no device can be 100% efficient, there is 
always some loss of electrical power associated with the operation of every device 
and component. Alongside others forms, the power loss often comes out as heat 
making heat management a very important aspect of any electrical/electronic design. 
It is even more essential for circuits and systems that are enclosed inside a box or 
enclosure where ventilation of generated heat 

 



REVISED GOALS UNDER THIS PROJECT 

Following the work done under Wave 3, the goals of the project-work for this wave are 
specified below -  

1. Detailed study of heat distribution & temperature profile of the existing IPD 
configuration 

2. Studying the reduction in operational performance due to derating, with some 
focus on the load and electronics 

3. Evaluating the shortcomings of the previously made IPD configurations 

4. Improving the previously made IPD configuration through various possible means 

5. Studying the long-term impacts on lifespan and ways to enhance it 

REVISED SCOPE OF WORK - 

To start with, it’s essential to build a 3D model of the system based on the 
specifications and geometry of the involved components. Then, the heat generated by 
the components (in Watts) is to be calculated based on the technical specifications of 
each component (power ratings, operation efficiency). Based on this, a simulation can 
be performed to visualize the heat distribution and temperature gradient across the 
assembly. The main aim of this task is to determine what can be the maximum 
temperature reached for each component and whether it falls inside the safe window. 
The temperature rise inside the assembly is also to be checked. Moreover, its 
desirable to see if there is any immediate depreciation in performance of components 
(known as derating) due to increase in temperature.  

This being said and done, the main challenge of this study is to determine optimal 
approaches or methods to prevent heating of components. This can be done by 
installation of fans or blowers (active cooling) and also by changing the configuration 
of the components installed inside the enclosure. The relative position and the 
orientation of components can affect the overall heat distribution while operation and 
it is worthwhile to carry out optimization to find out the best geometry. However, the 
new geometries mayn’t be easy to implement as the enclosure comes with a certain 
build and design from the manufacture. Thus, active cooling approach using 
fans/blowers is good to start with. 

REVISED METHODOLOGY 

Following the work done in Wave 3, the methodology adopted for this project is 
describe in this section. 

The Intelligent Power Distributor (IPD) of the NICA-MPD (whose assembly/design is 
discussed later) houses several electrical components inside an enclosure. To ensure 
that things work out perfectly over the long run and there is no failures during 
operation, it is ideal to use the power of heat simulations and CFD (Computational 



Fluid Design) to build and visualize the IPD model and heat generation scenario during 
operation. Out of the several software and computational tools available, Autodesk 
CFD 2021 (student edition) and Autodesk Inventor Professional 2019 (student edition) 
were used for this study. 

1. DETERMINING HEAT DISSIPATION FOR ALL THE COMPONENTS (WITH 
REVISIONS) 
 

Component Name Heat 
Generation (W) 

Quantity (No) 

Siemens S7-1200 CPU 1214C (6ES7214-1AG40-0XB0) 12 1 

Siemens S7-1500 CPU 1515F (6ES7515-2FM01-0AB0) 6.3 - 

SIMATIC S7-1200, Digital output SM 1222 (6ES7222-
1BH32-0XB0) 

2.5 4 

SIMATIC S7-1500, DIGITAL OUTPUT MODULE 
(6ES7522-5EH00-0AB0) 

3.8 - 

WAGO 787-1671 not known 1 

MeanWell DRC-100A 14.4 1 

Meanwell DRC-100 B 11.94 - 

MeanWell DDR 15 G 12 4.2 1 

Legrand MCB TX³ 10000 1P 16A 2 16 

Legrand MCB TX³ 10000 1P 25A 2.7 - 

Legrand MCB TX³ 10000 1P 63A 5.5 - 

Legrand MCB TX³ 10000 3P 16A 6 - 

Legrand MCB TX³ 10000 3P 25A 8.1 - 

Legrand MCB TX³ 10000 3P 63A 16.5 2 

Legrand Motorised control DX³ - 24-48 V~/= - standard 0 - 

Total Heat Dissipated (in Watts)  105.6 

 

Table 1 shows the list of electrical components used in the Intelligent Power 
Distributor. The list shows name of the components, quantity for each component, 
power dissipation (in form of heat, Watts) and reference to the manufacture-supplied 
technical specifications.  

(The placement of some components is either not known or they aren’t required for 
the simulation study at this stage so their quantity isn’t mentioned). 

 

2. REVISED CALCULATION OF FAN SIZING AND SPECIFICATIONS FOR 
COOLING  

Based on the summation value of heat generated, we can calculate the specifications 
of a fan/blower that is required for mitigating the heat load. 



 

1. Based on the fan-sizing guide, the minimum CFM of the fan = 33.37 
2. (Heat load = 105.6 Watts for the enclosure and desired operation temperature is 10 

degrees above the operating temperature). 

3. For this study, the physical dimensions of the fan are most important as it has 
to be practically installed inside the enclosure. A commercially available circular 
DC cooling fan is taken for simulation. The specifications are as follows – 
 

 Dimensions: 17.2 cm x 17.2 cm x 5.1 cm   
 Air Flow of fan (maximum): 8.65 m3/min i.e. CFM ~ 300 

(It was verified that minimum CFM of the fan is above than the calculated value). 
 RPM (maximum): 4000  

 

It is to be noted that the above calculation is based on the assumption that components 
are closed inside an enclosure which has no openings for ventilation (and so all heat 
is trapped inside). The exact fan specifications (sizing, power, speed etc) will also 
depend on some factors like density of air and humidity content in air (that will vary on 
daily and seasonal basis).  

The distribution of heat inside the enclosure is the most important aspect to deal with. 
The dissipated heat is concentrated in some spots and it may happen that air from fan 
doesn’t adequately blow over those spots owing to the miniature air flow channels 
created inside the enclosure by the openings in the enclosure. Thus, CFD simulation 
of air flow by fan is also to be carried out along with the simulation of power dissipation 
of components (as done earlier). 

 



3. HEAT SIMULATION PRIOR TO FAN INSTALLATION (PRIMARY 
SIMULATION) 

A heat simulation of the 3D geometry before the installation of cooling fan (referred to 
as primary simulation in this study) was carried out using Autodesk CFD 2021. The 
figure showing heat distribution can be found in the Wave 3 report.  Component-wise 
analysis can be found out in the later sections. 

4. HEAT SIMULATION AFTER INSTALLATION OF COOLING FAN (SECONDARY 
SIMULATION) 
 
A heat simulation of the 3D geometry after the installation of cooling fan (referred 
to as secondary simulation in this study) was carried out using Autodesk CFD 
2021. Component-wise analysis can be found out in the subsequent sections.  

 

 

 

 

 

 

 

 

 

 

Figure shows velocity streamlines dictating the flow of air inside IPD in secondary 
simulation (post addition of fan). 

OBSERVATIONS AND RESULTS 

1. IMPACT OF HEAT GENERATION ON COMPONENTS (BASED ON PRIMARY 
SIMULATION) 

Before we take up any challenge and work towards its solution, it’s advisable to 
analyse all possible problems in detail. It is known that increase in temperature leads 
to decrement in performance of the electronic components as they don’t perform at 
their specified power rating. The rating of electrical components is done at the 
standard ambient temperature (ie 25 – 30 Celsius) but the rating decreases with 
increase in ambient temperature during operation. This is known as derating.  



From the results of primary simulation, the maximum temperature (that is reached 
during operation) is determined for each component and corresponding derated value 
is found out (from technical specifications of that component).  

It is evident that most of the components perform at a sub-standard rating or capacity 
due to increased temperatures and this leads to several impacts. A plausible solution 
to this is to ensure cooling to properly mitigate heat. And for this, secondary simulation 
was performed. 

2. IMPACT OF COOLING (BASED ON SECONDARY SIMULATION) 

Active cooling by use of a fan was decided to be a suitable approach for mitigating 
heat and a simulation was carried out by adding the cooling fan to the previous 
geometry. As we notice, there has been a significant reduction in maximum 
temperature reached by the use of cooling fan.  



Table shown here gives a detailed component-
wise analysis of temperatures for both the 
simulation and also highlights the reduction 

obtained by installation of fan. 
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ESSENTIAL FINDINGS & CONCLUSIONS: 

Electronic and electrical components are the essential part of every modern-day 
system or device. However, all such components dissipate power in the form of heat 
owing to inefficiency. Heat dissipated leads to rise in temperature during operation and 
this is a major issue when components are boxed inside an enclosure with restricted 
or no ventilation. Based on the concepts of this study and works carried out, the 
following conclusions can be drawn – 

1. The study for thermal management of Intelligent Power Distribution (IPD) 
system is carried out in this work as heat management & mitigation is an 
essential step to designing of any electrical circuit or system. 
 

2. The power loss was calculated for each component. The power loss value may 
be found directly in the technical specifications or can be calculated from the 
other values given (input, output, efficiency etc). 
 

3. The available 3D model of the IPD system was simplified and a heat simulation 
(referred to as primary simulation in this study) was carried out based on the 
power loss values. The minimum/maximum temperatures and heat distribution 
was obtained. 
 

4. The temperature for many of the components goes significantly high 
(sometimes beyond the safe limit). Also rise in temperature leads to derating or 
reduction in performance or capacity. This is described in Table 2 
 

5. Out of several approaches possible for mitigating heat, active cooling by the 
use of a cooling fan is a plausible approach. The calculation for fan sizing is 
done and a simulation is carried out (referred to as secondary simulation) with 
the fan installed. 
 

6. A significant reduction in temperature values is noticed. The analysis of this 
reduction is described in Table 3. A average reduction of maximum temperature 
by 35.773 ° Celsius (i.e 41.534 %) is observed. 
 

7. By the installation of just a single small size fan, thermal management of heat 
enclosure is achieved by a great deal. 

 

REVISED FUTURE SCOPE FOR THE PROJECT: 
 

1. The power loss of most of the components has been determined except for 1-
2 components. Also, some components may have a variable power loss or 



power loss in forms other than heat. So, the calculation procedure can be 
revalidated and the final values can be rechecked.  
 

2. The simulation procedure (both for primary & secondary simulation) can be 
improved in various aspects, say in terms of simplification of geometry, 
improving meshing & material selection. Time elapsed and computing resource 
consumption is also to be taken care of.  
 

3. The current study has focused on the use of a single small-sized fan only. 
Distribution of fan from air seems to be slightly uneven and a single fan can be 
inadequate for cooling.  
 

4. A few more fans or fans of bigger size can be installed properly to manage heat 
and this could be the immediate steps in future study. The model geometry has 
to be checked simultaneously for this 
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