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1 Abstract

In this paper, we review various approaches to the parton model

in hard deep inelastic processes. The development of QCD to describe

the above processes requires going beyond the standard CPM to take

into account the transverse momentum and the virtuality of the initial

partons, which is carried out within the framework of the kT-factorization

or TMD-factorization models, but is rather limited. The need arises to

construct a gauge-invariant calculation scheme in the kT-factorization

model to describe multiscale rigid processes under Regge kinematics,

which is implemented in the Reggeization of partons (RPA) approach

based on the e�ective action of L.N. Lipatov.

2 Introduction

The ultrarelativistic proton is made up of a cloud of quarks, antiquarks

and gluons, collectively called "partons". These partons arise due to the

fact that the original quarks can emit gluons, which in turn can emit

more gluons or split into quark-antiquark pairs. In parallel, the reverse

process of fusion of partons also takes place, and as a result, a kind of

equilibrium arises between partons of di�erent types.

The processes of splitting and fusion of partons lead to the fact that

their energies are not �xed, and with some probability can be any - from a

certain minimum value and almost up to the energy of the entire proton.

That is why one speaks not just of partons, but of parton densities: q (x),

g (x), etc., where x is the fraction of the ultrarelativistic proton energy

carried by a given parton.

Parton densities depend on one more variable - the scale of the
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process rigidity. The scale of sti�ness, relatively speaking, shows at what

distances the collision of partons occurs. The tougher the process, the

more partons can take part in it, that is, the higher the parton density.

To study the parton structure of a proton, the processes of deep

inelastic scattering are used. One of the main such processes is the process

of inclusive deep inelastic scattering of a lepton by a proton

p(P ) + e± (q2)→ e± (q3) +X,

where P, q2, q3 - are particle impulsess, and X - is an arbitrary hadronic

�nal state.

Let's ñonsider the kinematics of the parton model. The momentum

of the parton under consideration is equal to p = xP , where P is the

total momentum of the proton. We put k, k′ - impulses of the incident

and the scattered electron, respectively, then q = k′−k is the transferred
momentum, p+ q is the �nal momentum of the interacting quark

Then the Mandelstam variables ŝ and t̂ for the process of interaction

of an electron with a quark inside a proton can be expressed as follows:

ŝ = (p+ k)2 = 2(p · k) = 2x(P · k) = x(P + k)2 = xS,

t̂ = q2

Then, for this process in the framework of the parton model, we obtain

the scattering cross section

d2σ

dxdQ2
=
∑
i

fi(x)Q2
i

2πα2

Q4

[
1 +

(
1− Q2

xS

)2
]
,
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where Qi is the charge of the i − th quark, Q2 = −q2. And the

structural functions of the proton take the form:

F1(x) = 1
2xF2(x)

F2(x) =
∑

iQ
2
ixfi(x)

3 Quantum chromodynamics

Since we are considering inelastic scattering by a proton, we will need

some information about the interaction with the structural components

of the proton (quarks). So let's start with an overview of the basics of

interactions in QCD.

Quantum chromodynamics is used to describe the strong interaction

of quarks and gluons. The fundamental parameters are the coupling

constants gs
(
αs = g2s

4π

)
and quark masses. By analogy with quantum

electrodynamics, the color charge is now used in quantum chromodynamics.

QCD is a non-Abelian gauge theory based on the transformation group

SU(3), whose dimension is 8, which corresponds to 8 gluons.

By requiring the observance of the local gauge symmetry of the free

quark Lagrangian and adding the term of the free gluon �eld, we write

the QCD Lagrangian

L =
∑
q

ψ̄q,a
(
iγµ∂µδab − gsγµtCabGC

µ −mqδab
)
ψq,b −

1

4
FA
µνF

Aµν,

where γµ - Dirac matrix, ψq,b - spinor of a quark �eld with �avor q and

color a
(
a = 1, Nc, Nc = 3

)
, and massmq,G

C
µ operator which corresponds

to the 4-vector of the gluon �eld, where C ranges from 1 to 8.
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The symbol FA
µν , represents the gauge invariant gluon �eld strength

tensor, it is analogous to the electromagnetic �eld strength tensor, in

quantum electrodynamics.

FA
µν = ∂µG

A
ν − ∂νGA

µ − gsfABCGB
µG

C
ν ,

[
tA, tB

]
= ifABCt

C ,

where GA
µ , are the gluon �elds, dynamical functions of spacetime, in the

adjoint representation of the SU(3) gauge group and fabc are the structure

constants of SU(3).

To describe the dependence of the e�ective color charge on the distance

between the quarks, the parameter αs(µ
2
R) is introduced - the running

coupling constant. As the distance between the quarks decreases, the

coupling constant decreases (asymptotic freedom), and as the distance

increases, it also increases (con�nement).

Using the renormalization group equation and applying the conditions

of our theory, as well as taking into account the relation for the mass scale

in the massless quark approximation, we obtain the following expression

for the equation of the coupling constant

αs
(
µ2
R

)
=

12π

(33− nf) ln (µ2
R/Λ

2)
.

We can de�ne the propagators by the relation where πi presents any

�eld. Curly, wavy and zigzag lines denote gluons, photons and weak

bosons respectively, while full, dashed and dot lines stand for fermions

(leptons and quarks), Higgs particles and ghosts �elds, respectively. The

vertices are derived using LI , instead of usual usage of iLI . All the

momenta of the particles are supposed to �ow in. The only exception
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was made for the ghost �elds, where direction of momentum coincides

with the direction of ghost number �ow.

∆ij(k) = i

∫
d4xe−ikx 〈0 |T (qi(x)qj(0))| 0〉 .

Due to the gauge invariance of the gluon �eld, we can determine it only

up to the gauge transformation

Ga
µ → G′aµ = Ga

µ −
1

gs
∂µαa − fabcαbGc

µ

For further calculations, we need a propagator type that takes into

account the rules for traversing the poles. Let us write the form of the

propogator in the generalized Lorentz gauge

Dµν =
1

k2 + iε

[
gµν − (1− ξ) kµkν

k2 + iε

]
.

Depending on the value of the parameter ε, we can get the form of our

propagator in other gauges. ε = 1 in Feynman gauge and ε = 0 Landau

gauge.

However, it should be understood that when choosing a generalized

gauge, we may have divergences associated with virtual scalar and longitudinal

gluons that do not contribute to physical states. To compensate for such

divergences, the introduction of ghost particles is required.

But there is another way to solve this problem - this is the use of

axial gauge (gauge vector nµ is added), in which the Feynman rules do

not contain Faddeev-Popov ghosts

Dµν =
1

k2 + iε

[
gµν − nµkν + kµnν

(n · k)

]
.
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In conclusion, we present the completeness relations for outer quarks

and gluons, which will be necessary when summing over the polarizations

in the squared moduli of the amplitudes. We choose the completeness

relations for quarks in the form:∑
s

us(p)ūs(p) = p̂+m,
∑
s

vs(p)v̄s(p) = p̂−m.

And also in the Feynman gauge, the completeness relation for gluon

polarizations is: ∑
λ

εaµ(q)ε∗bν (q) = −δabgµν.

4 Collinear parton model

For the cross section for inclusive hard processes in hadronic collisions

at high at energies, a factorization formula for the collinear parton model

(CPM) is introduced

dσ =
∑
ij

∫ 1

0

dx1fi
(
x1, µ

2
) ∫ 1

0

dx2fj
(
x2, µ

2
)
dσ̂ijCPM

(
x1, x2, µ

2
)
.

The slow evolution of parton densities is determined by the Dokshitzer-

Gribov-Lipatov-Altarelli-Parisi (DGLAP) equations, which describe the

evolution of the densities fg(x, µ
2) and fq(x, µ

2) for quarks and antiquarks

of each aroma. These equations are as follows:

d
d lnµ2fg

(
x, µ2

)
=

αs(µ2)
2π

∫ 1

x
dz
z

{
Pg←q(z)

∑
q

[
fq
(
x
z , µ

2
)

+ fq̄
(
x
z , µ

2
)]

+

+Pg←g(z)fg
(
x
z , µ

2
)}
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d

d lnµ2
fq
(
x, µ2

)
=
αs
(
µ2
)

2π

∫ 1

x

dz

z

{
Pq←q(z)fq

(x
z
, µ2
)

+ Pq←g(z)fg

(x
z
, µ2
)}

,

d

d lnµ2
fq̄
(
x, µ2

)
=
αs
(
µ2
)

2π

∫ 1

x

dz

z

{
Pq←q(z)fq

(x
z
, µ2
)

+ Pq←g(z)fg

(x
z
, µ2
)}.

The splitting functions P have the following physical meaning: Pq←q(z)

is the probability that the gluon was emitted by a quark and carries

its fraction of the momentum z; Pg←q(z) is the probability of a gluon

emitting a gluon with a fraction of the momentum z; Pq←g(z) is the

probability that a quark will emit a gluon and therefore will have a

fraction of the momentum z; Pg←g(z) - the probability of the production

of a pair by a gluon while the quark carries away the z fraction of the

gluon momentum. These functions look like this:

Pq←q(z) = 4
3

[
1+z2

(1−z)+ + 3
2δ(1− z)

]
Pg←q(z) = 4

3

[
1+(1−z)2

z

]
Pq←g(z) = 1

2

[
z2 + (1− z)2

]

Pg←g(z) = 6

[
1− z
z

+
z

(1− z)+
+ z(1− z) +

(
11

12
− nf

18

)
δ(1− z)

]
,

where nf is the number of �avors of light quarks, and the function z 1
(1−z)+

- the so-called "plus-replacement de�ned so that the relation∫ 1

0

dz
f(z)

(1− z)+
=

∫ 1

0

dz
f(z)− f(1)

(1− z)
.
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5 Reggeization approach of partons

The reggeization of partons approach is a gauge-invariant scheme of

quantum chromodynamics at high energies, which extends the collinear

parton model to the case of hard multiscale processes in the high-energy

regime when we are dealing with processes in multi-Regge kinematics.

In the MRC, the collision energy
√
S is quite large compared to the

transverse momenta of the �nal particles
√
S � |kTi| and the invariant

masses of their pairs Mij = p(ki + kj)
2. The main component of the

PRA at high energies is the kT -factorization of non-integrated parton

distribution functions (nPDF) and gauge-invariant parton cross section

with virtual partons in the initial state, where these partons are considered

as Reggeized gluons R and Reggeized quarks Q.

g (p1) + g (p2)→ g (k1) + Y (PA) + g (k2) .

In the collinear limit, where k2
T1,2 � µ2 and 0 ≤ z1,2 ≤ 1, the

asymptotics for the square of the tree matrix element of the process is

well known

|M|22

C.L. '
4g4

s

k2
T1k

2
T2

Pgg (z1)Pgg (z2)
|ACPM |2

z1z2
.

The MRC asymptotics of the amplitudes in the EFT are constructed

from gauge-invariant blocks - e�ective vertices that describe the production

of clusters of QCD partons, strongly separated from each other in rapidity.

These e�ective vertices are linked together by t-channel exchanges of

gauge-invariant virtual degrees of freedom - reggeized glues R± and

reggeized quarks Q±. The latter obey special kinematic constraints, since

the �elds Q±(R±) carry only the q± conical component of the momentum
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and the transverse momentum of the same order, while q = 0. These

kinematic constraints are equivalent to the MRC. The requirements for

the gauge invariance of the e�ective vertices and the aforementioned

kinematic constraints on the interaction of QCD partons and Reggeons

in the EFT are not local and contain the Wilsonian exponents of gluon

�elds. After expansion in terms of perturbation theory, the latter generate

in�nite series of induced vertices of interactions between partons and

reggeons

E�ective vertex R±gg, shown as a diagram in the �gure

Γabcµν± (k1, k2) =
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= −igsfabc
[

2gµνk
∓
1 + (2k2 + k1)µ n

∓
ν − (2k1 + k2)ν n

∓
µ −

(k1 + k2)
2

k∓1
n∓µn

∓
ν

]
.

Calculating the square of the e�ective vertex R±gg, folded with the

polarization vectors of real external gluons, we get:∑
λ1,λ2

|Γµν± (k1,−k2) εµ (k1, λ1) ε
?
ν (k2, λ2)|2 = 8

(
k∓1
)2
.

For the square of the amplitude of the process, written using the

Feynman rules, the following condition for the collinear limit for the

RAP amplitude must be satis�ed∫
dφ1dφ2

(2π)2
lim
t1,2→0

APRA|2 = |ACPM |2.

Using the result and Feynman's rules (for this case), we can obtain

the MRK asymptotics of the square of the process amplitude. And now

we introduce the modi�ed MRK approximation (mRMK) for the squared

modulus of the amplitude of the subprocess

|M|2mMRK '
4g4

s

q2
1q

2
2

Pgg (z1)Pgg (z2)
|APRA|2

z1z2
.

To derive the PDP factorization formula in LO, we substitute the

mMCR approximation into the ÑPM factorization formula, integrating

additional partons k1,2 over the phase space:
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dσ =

∫
dk+

1 d
2kT1

(2π)3k+
1

∫
dk−2 d

2kT2

(2π)3k−2

∫
dx̃1dx̃2fg

(
x̃1, µ

2
)
fg
(
x̃2, µ

2
) |M|2

2Sx̃1x̃2
×

× (2π)4δ

(
1

2

(
q+

1 n− + q−2 n+

)
+ qT1 + qT2 − PA

)
dΦA

.

The �nal form of our non-integrated parton distribution functions

Φi

(
x, t, µ2

)
= Ti

(
t, µ2

) αs(t)
2π

∑
j=q,q̄,g

∫ 1

x

dzPij(z)
x

z
fj

(x
z
, µ2
)
θ
(
1−∆KMR

(
t, µ2

)
− z
)
.

The collinear singularity is regularized by the Sudakovskiy form factor,

which resumulates the two-logarithmic corrections in the leading logarithmic

approximation in a manner similar to that used in standard parton

shower algorithms

Ti
(
t, µ2

)
= exp

[
−
∫ µ2

t

dt′

t′
αs (t′)

2π

∑
j=q,q̄,g

∫ 1

0

dzz · Pji(z)θ
(
1−∆KMR

(
t′, µ2

)
− z
)]
.

Non-integrated parton distribution functions satis�es the following

normalization condition∫ µ2

0

dtΦi

(
x, t, µ2

)
= xfi

(
x, µ2

)
,

which provides normalization for one-scale observables in a rigid process

to the corresponding LO CPM results up to power-law suppressed corrections

and NLO terms of degree αs. The results for multiscale observables in the
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RPA di�er signi�cantly from those obtained in the CPM due to nonzero

transverse momenta of partons in the initial state.
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